ZHCSCZ2A July   2014  – September 2014 DS125BR820

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Electrical Characteristics — Serial Management Bus Interface
    7. 6.7 Timing Requirements Serial Bus Interface
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
      1. 7.2.1 Functional Datapath Blocks
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Pin Control Mode:
      2. 7.4.2 Slave SMBus Mode:
      3. 7.4.3 SMBus Master Mode
    5. 7.5 Signal Conditioning Settings
    6. 7.6 Programming
      1. 7.6.1 EEPROM Register Map for Single Device
    7. 7.7 Register Maps
      1. 7.7.1 Transfer Of Data Via The SMBus
      2. 7.7.2 SMBus Transactions
      3. 7.7.3 Writing a Register
      4. 7.7.4 Reading a Register
      5. 7.7.5 Detailed Register Map
  8. Applications and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Signal Integrity in 40G-CR4/KR4/SAS/SATA/PCIe Applications
      2. 8.1.2 Signal Integrity in 40G-SR4/LR4 Applications
      3. 8.1.3 Rx Detect Functionality in 40G-CR4/KR4/SAS/SATA Applications
    2. 8.2 Typical Applications
      1. 8.2.1 Generic High Speed Repeater
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Performance Plots
      2. 8.2.2 Front Port Applications (40G-CR4/SR4/LR4)
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Performance Plots
      3. 8.2.3 PCIe Board Applications (PCIe Gen-3)
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Design Procedure
        3. 8.2.3.3 Application Performance Plots
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 商标
    2. 11.2 静电放电警告
    3. 11.3 术语表
  12. 12机械封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Supply Voltage (VDD to GND, 2.5 V Mode) -0.5 +2.75 V
Supply Voltage (VIN to GND, 3.3 V Mode) -0.5 +4.0 V
LVCMOS Input/Output Voltage -0.5 +4.0 V
CML Input Voltage -0.5 VDD + 0.5 V
CML Input Current -30 +30 mA
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. Absolute Maximum Numbers are ensured for a junction temperature range of -40°C to +125°C. Models are validated to Maximum Operating Voltages only.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range -40 125 °C
Tsolder Lead Temperature Range Soldering (4 sec.)(3) 260 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) -4000 4000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) -1000 1000
(1) JEDEC document JEP155 states that 4000-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 1000-V CDM allows safe manufacturing with a standard ESD control process.
(3) For soldering specifications: See application note SNOA549.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN TYP MAX UNIT
Supply Voltage (2.5 V mode)(1) 2.375 2.5 2.625 V
Supply Voltage (3.3 V mode)(1) 3.0 3.3 3.6 V
Ambient Temperature -40 +85 °C
SMBus (SDA, SCL) 3.6 V
Supply Noise up to 50 MHz(1) 100 mVp-p
(1) DC plus AC power should not exceed these limits.

6.4 Thermal Information

THERMAL METRIC(1) DS125BR820 UNIT
WQFN
54 PINS
RθJA Junction-to-ambient thermal resistance 26.6 °C/W
RθJCtop Junction-to-case (top) thermal resistance 10.8
RθJB Junction-to-board thermal resistance 4.4
ψJT Junction-to-top characterization parameter 0.2
ψJB Junction-to-board characterization parameter 4.3
RθJCbot Junction-to-case (bottom) thermal resistance 1.5
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER
IDD Current Consumption, 2.5 V Mode EQ = Level 4, VOD = Level 6
RXDET = 1, PWDN = 0
220 280 mA
Current Consumption, 3.3 V Mode EQ = Level 4, VOD = Level 6
RXDET = 1, PWDN = 0
220 280 mA
Power Down Current Consumption PWDN = 1 14 27 mA
VDD Integrated LDO Regulator VIN = 3.0 - 3.6 V 2.375 2.5 2.625 V
LVCMOS / LVTTL DC SPECIFICATIONS
VIH25 High Level Input Voltage 2.5 V Supply Mode 1.7 VDD V
VIH33 High Level Input Voltage 3.3 V Supply Mode 1.7 VIN V
VIL Low Level Input Voltage 0 0.7 V
VOH High Level Output Voltage
(ALL_DONE pin)
IOH = −4mA 2.0 V
VOL Low Level Output Voltage
(ALL_DONE pin)
IOL = 4mA 0.4 V
IIH Input High Current (PWDN pin) VIN = 3.6 V,
LVCMOS = 3.6 V
-15 +15 µA
IIL Input Low Current (PWDN pin) VIN = 3.6 V,
LVCMOS = 0 V
-15 +15 µA
4-LEVEL INPUT DC SPECIFICATIONS
IIH Input High Current with internal resistors
(4–level input pin)
VIN = 3.6 V,
LVCMOS = 3.6 V
+20 +150 µA
IIL Input Low Current with internal resistors
(4–level input pin)
VIN = 3.6 V,
LVCMOS = 0 V
-160 -40 µA
VTH Voltage Threshold from Pin Mode Level 0 to R VDD = 2.5 V (2.5 V supply mode)
Internal LDO Disabled
See Table 1 for details
0.50 V
Voltage Threshold from Pin Mode Level R to F 1.25
Voltage Threshold from Pin Mode Level F to 1 2.00
Voltage Threshold from Pin Mode Level 0 to R VIN = 3.3 V (3.3 V supply mode)
Internal LDO Enabled
See Table 1 for details.
0.66 V
Voltage Threshold from Pin Mode Level R to F 1.65
Voltage Threshold from Pin Mode Level F to 1 2.64
CML RECEIVER INPUTS (IN_n+, IN_n-)
ZRx-DIFF-DC Rx DC differential mode impedance Tested at VDD = 2.5 V 80 100 120 Ω
ZRx-DC Rx DC single ended impedance Tested at VDD = 2.5 V 40 50 60 Ω
RLRx-DIFF Rx Differential Input return loss SDD11 10 MHz -19 dB
SDD11 2 GHz -14
SDD11 6-11.1 GHz -8
RLRx-CM Rx Common mode return loss SCC11 0.05 - 5 GHz -10 dB
VRx-ASSERT-DIFF-PP Signal detect assert level for active data signal SD_TH = F (float),
1010 pattern at 12 Gbps
57 mVp-p
VRx-DEASSERT-DIFF-PP Signal detect de-assert for inactive signal level SD_TH = F (float),
1010 pattern at 12 Gbps
44 mVp-p
HIGH SPEED OUTPUTS
RLTx-DIFF Tx Differential return loss SDD22 10 MHz - 2 GHz -15 dB
SDD22 5.5 GHz -12
SDD22 11.1 GHz -10 dB
RLTx-CM Tx Common mode return loss SCC22 50 MHz- 2.5 GHz -8 dB
ZTx-DIFF-DC DC differential Tx impedance 100 Ω
ITx-SHORT Transmitter short circuit current limit Total current when output is shorted to VDD or GND 20 mA
VTx-CM-DC-LINE-DELTA Absolute delta of DC common mode voltage between Tx+ and Tx- 25 mV
VTx-DIFF1-PP Output Voltage Differential Swing Differential measurement with OUT_n+ and OUT_n-,
AC-Coupled and terminated by 50 Ω to GND,
Inputs AC-Coupled,
Measured with 8T Pattern at 12 Gbps(2)
VID = 600 mVp-p
VOD = Level 6(3)(4)
615 mVp-p
VTx-DIFF2-PP Output Voltage Differential Swing Differential measurement with OUT_n+ and OUT_n-,
AC-Coupled and terminated by 50 Ω to GND,
Inputs AC-Coupled,
Measured with 8T Pattern at 12 Gbps(2)
VID = 1000 mVp-p
VOD = Level 6(3)(4)
950 mVp-p
VTx-DIFF3-PP Output Voltage Differential Swing Differential measurement with OUT_n+ and OUT_n-,
AC-Coupled and terminated by 50 Ω to GND,
Inputs AC-Coupled,
Measured with 8T Pattern at 12 Gbps(2)
VID = 1200 mVp-p
VOD = Level 6(3)(4)
1100 mVp-p
TPDEQ Differential propagation delay EQ = Level 1 to Level 4 80 ps
VTx-CM-AC-P AC common mode voltage VOD = Level 6, 12 Gbps 20 mV rms
VDISABLE-OUT Tx disable output voltage Driver disabled via PWDN -30 1 30 mVp-p
VOOB-IDLE OOB idle output voltage VID = 0 mVp-p 15 mVp-p
VOOB-OS-DELTA OOB offset delta OOB pattern, EQ = Level 1
VOD = Level 6
15 mVp-p
VOOB-CM-DELTA OOB common mode delta OOB pattern, EQ = Level 1
VOD = Level 6
11 mVp-p
TTx-IDLE-SET-TO-IDLE Time to transition to idle after differential signal VID = 1.0 Vp-p, 1.5 Gbps 0.70 ns
TTx-IDLE-TO-DIFF-DATA Time to transition to valid differential signal after idle VID = 1.0 Vp-p, 1.5 Gbps 0.04 ns
RJADD Additive Random Jitter Evaluation Module (EVM) Only, FR4,
VID = 800 mVp-p, EQ = Level 1
PRBS15, 12 Gbps
VOD = Level 6
All other channels active (5)
0.36 ps rms
EQUALIZATION
DJE1 Residual deterministic jitter at 6 Gbps 5” Differential Stripline, 5mil trace width, FR4,
VID = 800 mVp-p,
PRBS15, EQ = Level 2,
VOD = Level 6
0.06 UIp-p
DJE2 Residual deterministic jitter at 12 Gbps 5” Differential Stripline, 5mil trace width, FR4,
VID = 800 mVp-p,
PRBS15, EQ = Level 2,
VOD = Level 6
0.12 UIp-p
(1) Allowed supply noise (mVp-p sine wave) under typical conditions.
(2) 8T pattern is defined as a 1111111100000000'b pattern bit sequence.
(3) ATE measurements for production are tested at DC.
(4) In 40G-CR4/KR4/SAS/SATA/PCIe applications, the output VOD level is not fixed. It adjusts automatically based on the VID input amplitude level. The output VOD level set by VODA/B[1:0] depends on the VID level and the frequency content. The DS125BR820 repeater is designed to be transparent in this mode, so the Tx-FIR (de-emphasis) is passed to the Rx to support the handshake negotiation link training.
(5) Additive random jitter is given in RMS value by the following equation: RJADD = √[(Output Jitter)2 - (Input Jitter)2]. Typical input jitter for these measurements is 150 fs rms.

6.6 Electrical Characteristics — Serial Management Bus Interface

Over recommended operating supply and temperature ranges unless other specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SERIAL BUS INTERFACE DC SPECIFICATIONS
VIL Data, Clock Input Low Voltage 0.8 V
VIH Data, Clock Input High Voltage 2.1 3.6 V
VOL Output Low Voltage SDA or SCL, IOL = 1.25 mA 0 0.36 V
VDD Nominal Bus Voltage 2.375 3.6 V
IIH-Pin Input Leakage Per Device Pin +20 +150 µA
IIL-Pin Input Leakage Per Device Pin -160 -40 µA
CI Capacitance for SDA and SCL See(1)(2) < 5 pF
RTERM External Termination Resistance pull to VDD = 2.5 V ± 5% OR 3.3 V ± 10% Pullup VDD = 3.3 V(1)(2)(3) 2000 Ω
Pullup VDD = 2.5 V(1)(2)(3) 1000 Ω
(1) Recommended value.
(2) Recommended maximum capacitance load per bus segment is 400 pF.
(3) Maximum termination voltage should be identical to the device supply voltage.

6.7 Timing Requirements Serial Bus Interface

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SERIAL BUS INTERFACE TIMING SPECIFICATIONS
FSMB Bus Operating Frequency ENSMB = VDD (Slave Mode) 400 kHz
ENSMB = FLOAT (Master Mode) 280 400 520 kHz
tFALL SCL or SDA Fall Time Read operation
RPU = 4.7 kΩ, Cb < 50 pF
60 ns
tRISE SCL or SDA Rise Time Read operation
RPU = 4.7 kΩ, Cb < 50 pF
140 ns
tF Clock/Data Fall Time See(1) 300 ns
tR Clock/Data Rise Time See(1) 1000 ns
tPOR Time in which a device must be operational after power-on reset See(1) 500 ms
(1) Compliant to SMBus 2.0 physical layer specification. See System Management Bus (SMBus) Specification Version 2.0, section 3.1.1 SMBus common AC specifications for details.
edge.gifFigure 1. Output Rise And Fall Transition Time
30198703.gifFigure 2. Propagation Delay Timing Diagram
30198704.gifFigure 3. Transmit Idle-Data and Data-Idle Response Time
30198794.gifFigure 4. SMBus Timing Parameters

6.8 Typical Characteristics

C006_SNLS491.png
EQ Level 4
VOD_DB 000'b
T 25°C
Figure 5. Typical Power Dissipation vs. VOD
C001_SNLS491.png
Data Rate, Test Pattern 1.5625 Gbps, 1010 Pattern
VOD Level 6
EQ Level 1
VDD 2.5 V
Figure 7. Typical VOD vs. Temperature
C003_SNLS491.png
Data Rate, Test Pattern 1.5625 Gbps, 1010 Pattern
VOD Level 6
EQ Level 1
T 25°C
Figure 6. Typical VOD vs. VDD
C005_SNLS491.png
A.
Data Rate, Test Pattern 1.5625 Gbps, 1010 Pattern
EQ Level 1
T 25°C
VDD 2.5 V
Figure 8. Typical VOD vs. VID