SLAS429E April 2005 – June 2017 DAC8551
PRODUCTION DATA.
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
| Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±500 | |||
| MIN | NOM | MAX | UNIT | ||
|---|---|---|---|---|---|
| Supply voltage (VDD to GND) | 2.7 | 5.5 | V | ||
| Digital input voltage (DIN, SCLK, and SYNC) | 0 | VDD | V | ||
| VREF | Reference input voltage | 0 | VDD | V | |
| VFB | Output amplifier feedback input | VOUT | V | ||
| TA | Operating ambient temperature | –40 | 105 | °C | |
| THERMAL METRIC(1) | DAC8551 | UNIT | |
|---|---|---|---|
| DGK (VSSOP) | |||
| 8 PINS | |||
| RθJA | Junction-to-ambient thermal resistance | 206 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 44 | °C/W |
| RθJB | Junction-to-board thermal resistance | 94.2 | °C/W |
| ψJT | Junction-to-top characterization parameter | 10.2 | °C/W |
| ψJB | Junction-to-board characterization parameter | 92.7 | °C/W |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| STATIC PERFORMANCE(1) | |||||||
| Resolution | 16 | Bits | |||||
| Relative accuracy | Measured by line passing through codes 485 and 64741 at VREF = 5 V, codes 970 and 63947 at VREF = 2.5 V |
DAC8551 | ±12 | LSB | |||
| DAC8551A | ±16 | LSB | |||||
| Differential nonlinearity | 2.5 V ≤ VREF ≤ 5.5 V, 0°C ≤ TA ≤ 105°C | ±1 | LSB | ||||
| 4.2 V < VREF ≤ 5.5 V, -40°C ≤ TA ≤ 105°C | ±1 | LSB | |||||
| 2.5 V ≤ VREF ≤ 4.2 V, -40°C ≤ TA ≤ 0°C | ±2 | LSB | |||||
| Zero-code error | Measured by line passing through codes 485 and 64741 | ±2 | ±12 | mV | |||
| Full-scale error | ±0.05% | ±0.5% | FSR | ||||
| Gain error | Measured by line passing through codes 485 and 64741 | DAC8551 | ±0.02% | ±0.15% | FSR | ||
| DAC8551A | ±0.02% | ±0.2% | FSR | ||||
| Zero-code error drift | ±5 | μV/°C | |||||
| Gain temperature coefficient | ±1 | ppm of FSR/°C | |||||
| PSRR | Power-supply rejection ratio | RL = 2 kΩ, CL = 200 pF | 0.75 | mV/V | |||
| OUTPUT CHARACTERISTICS(2) | |||||||
| Output voltage range | 0 | VREF | V | ||||
| Output voltage settling time | To ±0.003% FSR, 0200h to FD00h, RL = 2 kΩ, 0 pF < CL < 200 pF |
8 | 10 | μs | |||
| RL = 2 kΩ, CL = 50 pF | 12 | μs | |||||
| Slew rate | 1.8 | V/μs | |||||
| Capacitive load stability | RL = ∞ | 470 | pF | ||||
| RL = 2 kΩ | 1000 | pF | |||||
| Code change glitch impulse | 1 LSB change around major carry | 0.1 | nV-s | ||||
| Digital feedthrough | 50 kΩ series resistance on digital lines | 0.1 | |||||
| DC output impedance | At mid-code input | 1 | Ω | ||||
| Short-circuit current | VDD = 5 V | 50 | mA | ||||
| VDD = 3 V | 20 | ||||||
| Power-up time | Coming out of power-down mode, VDD = 5 V | 2.5 | μs | ||||
| Coming out of power-down mode, VDD = 3 V | 5 | ||||||
| AC PERFORMANCE | |||||||
| SNR | Signal-to-noise ratio | BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz, 1st 19 harmonics removed for SNR calculation |
95 | dB | |||
| THD | Total harmonic distortion | BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz, 1st 19 harmonics removed for SNR calculation |
–85 | dB | |||
| SFDR | Spurious-free dynamic range | BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz, 1st 19 harmonics removed for SNR calculation |
87 | dB | |||
| SINAD | Signal to noise and distortion | BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz, 1st 19 harmonics removed for SNR calculation |
84 | dB | |||
| REFERENCE INPUT | |||||||
| Reference current | VREF = VDD = 5 V | 40 | 75 | μA | |||
| VREF = VDD = 3.6 V | 30 | 45 | μA | ||||
| Reference input range | 0 | VDD | V | ||||
| Reference input impedance | 125 | kΩ | |||||
| LOGIC INPUTS(2) | |||||||
| Input current | ±1 | μA | |||||
| VIL | Input LOW voltage | 3 V ≤ VDD ≤ 5.5 V | 0.3 X VDD | V | |||
| 2.7 V ≤ VDD < 3 V | 0.1 X VDD | ||||||
| VIH | Input HIGH voltage | 3 V ≤ VDD ≤ 5.5 V | 0.7 X VDD | V | |||
| 2.7 V ≤ VDD < 3 V | 0.9 X VDD | ||||||
| Pin capacitance | 3 | pF | |||||
| POWER REQUIREMENTS | |||||||
| VDD | Supply voltage | 2.7 | 5.5 | V | |||
| IDD | Supply current | Normal mode, input code = 32768, no load, does not include reference current |
VDD = 3.6 V to 5.5 V, VIH = VDD and VIL = GND |
160 | 250 | μA | |
| VDD = 2.7 V to 3.6 V, VIH = VDD and VIL = GND |
140 | 240 | |||||
| All power-down modes, VIH = VDD and VIL = GND |
VDD = 3.6 V to 5.5 V | 0.2 | 2 | μA | |||
| VDD = 2.7 V to 3.6 V | 0.05 | 2 | |||||
| IOUT/IDD | Power efficiency | ILOAD = 2 mA, VDD = 5 V | 89% | ||||
| Specified performance temperature | –40 | 105 | °C | ||||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| t1(3) | SCLK cycle time | VDD = 2.7 V to 3.6 V | 50 | ns | ||
| VDD = 3.6 V to 5.5 V | 33 | |||||
| t2 | SCLK HIGH time | VDD = 2.7 V to 3.6 V | 13 | ns | ||
| VDD = 3.6 V to 5.5 V | 13 | |||||
| t3 | SCLK LOW time | VDD = 2.7 V to 3.6 V | 22.5 | ns | ||
| VDD = 3.6 V to 5.5 V | 13 | |||||
| t4 | SYNC to SCLK rising edge setup time | VDD = 2.7 V to 3.6 V | 0 | ns | ||
| VDD = 3.6 V to 5.5 V | 0 | |||||
| t5 | Data setup time | VDD = 2.7 V to 3.6 V | 5 | ns | ||
| VDD = 3.6 V to 5.5 V | 5 | |||||
| t6 | Data hold time | VDD = 2.7 V to 3.6 V | 4.5 | ns | ||
| VDD = 3.6 V to 5.5 V | 4.5 | |||||
| t7 | 24th SCLK falling edge to SYNC rising edge | VDD = 2.7 V to 3.6 V | 0 | ns | ||
| VDD = 3.6 V to 5.5 V | 0 | |||||
| t8 | Minimum SYNC HIGH time | VDD = 2.7 V to 3.6 V | 50 | ns | ||
| VDD = 3.6 V to 5.5 V | 33 | |||||
| t9 | 24th SCLK falling edge to SYNC falling edge | VDD = 2.7 V to 5.5 V | 100 | ns | ||
Figure 2. Linearity Error and Differential Linearity Error vs Digital Input Code (–40°C)
Figure 4. Linearity Error and Differential Linearity Error vs Digital Input Code (105°C)
Figure 6. Full-Scale Error vs Temperature
Figure 8. Supply Current vs Digital Input Code
Figure 10. Supply Current vs Supply Voltage
Figure 12. Supply Current vs Logic Input Voltage
Figure 14. Full-Scale Settling Time, 5-V Falling Edge
Figure 16. Half-Scale Settling Time, 5-V Falling Edge
Figure 18. Glitch Energy: 5-V, 1-LSB Step, Falling Edge
Figure 20. Glitch Energy: 5-V, 16-LSB Step, Falling Edge
Figure 22. Glitch Energy: 5-V, 256-LSB Step, Falling Edge
Figure 24. Signal-to-Noise Ratio vs Output Frequency
Figure 26. Output Noise Density
Figure 3. Linearity Error and Differential Linearity Error vs Digital Input Code
Figure 5. Zero-Scale Error vs Temperature
Figure 7. Source and Sink Current Capability
Figure 9. Power-Supply Current vs Temperature
Figure 11. Power-Down Current vs Supply Voltage
Figure 13. Full-Scale Settling Time, 5-V Rising Edge
Figure 15. Half-Scale Settling Time, 5-V Rising Edge
Figure 17. Glitch Energy: 5-V, 1-LSB Step, Rising Edge
Figure 19. Glitch Energy: 5-V, 16-LSB Step, Rising Edge
Figure 21. Glitch Energy: 5-V, 256-LSB Step, Rising Edge
Figure 23. Total Harmonic Distortion vs Output Frequency
Figure 25. Power Spectral Density
Figure 27. Linearity Error and Differential Linearity Error vs Digital Input Code (–40°C)
Figure 29. Linearity Error and Differential Linearity Error vs Digital Input Code (105°C)
Figure 28. Linearity Error and differential Linearity Error vs Digital Input Code
Figure 30. Zero-Scale Error vs Temperature
Figure 31. Full-Scale Error vs Temperature
Figure 33. Supply Current vs Digital Input Code
Figure 35. Supply Current vs Logic Input Voltage
Figure 37. Full-Scale Settling Time: 2.7-V Falling Edge
Figure 39. Half-Scale Settling Time: 2.7-V Falling Edge
Figure 41. Glitch Energy: 2.7-V, 1-LSB Step, Falling Edge
Figure 43. Glitch Energy: 2.7-V, 16-LSB Step, Falling Edge
Figure 45. Glitch Energy: 2.7-V, 256-LSB Step, Falling Edge
Figure 32. Source and Sink Current Capability
Figure 34. Power-Supply Current vs Temperature
Figure 36. Full-Scale Settling Time: 2.7-V Rising Edge
Figure 38. Half-Scale Settling Time: 2.7-V Rising Edge
Figure 40. Glitch Energy: 2.7-V, 1-LSB Step, Rising Edge
Figure 42. Glitch Energy: 2.7-V, 16-LSB Step, Rising Edge
Figure 44. Glitch Energy: 2.7-V, 256-LSB Step, Rising Edge