TPS563900

正在供货

具有电压调节功能的 18V 输入、3.5A/3.5A 双通道同步降压稳压器

产品详情

Iout (max) (A) 3.5 Vin (min) (V) 4.5 Vin (max) (V) 18 Topology Buck Type Converter Switching frequency (min) (kHz) 200 Switching frequency (max) (kHz) 1600 Features Enable, Light Load Efficiency, Pre-Bias Start-Up, Soft Start Adjustable, Synchronous Rectification Control mode current mode Vout (min) (V) 0.6 Vout (max) (V) 15 Rating Catalog Operating temperature range (°C) -40 to 85 Iq (typ) (A) 0.0012
Iout (max) (A) 3.5 Vin (min) (V) 4.5 Vin (max) (V) 18 Topology Buck Type Converter Switching frequency (min) (kHz) 200 Switching frequency (max) (kHz) 1600 Features Enable, Light Load Efficiency, Pre-Bias Start-Up, Soft Start Adjustable, Synchronous Rectification Control mode current mode Vout (min) (V) 0.6 Vout (max) (V) 15 Rating Catalog Operating temperature range (°C) -40 to 85 Iq (typ) (A) 0.0012
HTSSOP (DAP) 32 89.1 mm² 11 x 8.1
  • 4.5-V to 18-V Wide Input Voltage Range
  • I2C Controlled 7-Bits VID Programmable Output Voltage from 0.68 V to 1.95 V with
    10-mV Steps for Each Buck; Output Voltage can also be Set by Resistor Divider
  • Programmable Slew-Rate Control for Output-Voltage Transition
  • Up to 3.5-A Maximum Continuous Output Current in Buck 1 and Buck 2
  • Buck 1 and Buck 2 can be Paralleled to Deliver up to 7-A Current
  • I2C Compatible Interface With Standard Mode (100 kHz) and Fast Mode (400 kHz)
  • I2C Read Back Power Good Status and Die Temperature Warning
  • Pulse-Skipping Mode to Achieve High Efficiency in Light Loads
  • Adjustable Switching Frequency
    200 kHz to 1.6 MHz Set by External Resistor
  • Dedicated Enable and Soft-Start for Each Buck
  • Peak Current-Mode Control With Simple Compensation Circuit
  • Cycle-by-Cycle Overcurrent Protection
  • 180° Out-of-Phase Operation to Reduce Input Filter and Power Supply Conduced Noise
  • Overtemperature Protection
  • Available in 32-Pin Thermally Enhanced HTSSOP (DAP) Package
  • 4.5-V to 18-V Wide Input Voltage Range
  • I2C Controlled 7-Bits VID Programmable Output Voltage from 0.68 V to 1.95 V with
    10-mV Steps for Each Buck; Output Voltage can also be Set by Resistor Divider
  • Programmable Slew-Rate Control for Output-Voltage Transition
  • Up to 3.5-A Maximum Continuous Output Current in Buck 1 and Buck 2
  • Buck 1 and Buck 2 can be Paralleled to Deliver up to 7-A Current
  • I2C Compatible Interface With Standard Mode (100 kHz) and Fast Mode (400 kHz)
  • I2C Read Back Power Good Status and Die Temperature Warning
  • Pulse-Skipping Mode to Achieve High Efficiency in Light Loads
  • Adjustable Switching Frequency
    200 kHz to 1.6 MHz Set by External Resistor
  • Dedicated Enable and Soft-Start for Each Buck
  • Peak Current-Mode Control With Simple Compensation Circuit
  • Cycle-by-Cycle Overcurrent Protection
  • 180° Out-of-Phase Operation to Reduce Input Filter and Power Supply Conduced Noise
  • Overtemperature Protection
  • Available in 32-Pin Thermally Enhanced HTSSOP (DAP) Package

The TPS563900 device is a monolithic dual-synchronous buck converter with a wide 4.5-V to 18-V operating input-voltage range that can operate in
5-, 9-, 12-, or 15-V bus voltages and battery chemistries. Constant-frequency peak-current mode control simplifies the loop compensation and provides fast transient response.

External feedback resistors can be used to set the initial start-up voltage for each buck converter in the TPS563900 device. The feedback voltage reference for this start-up option is 0.6 V. When the voltage-identification (VID) DAC is updated through the I2C, the buck converter switches the feedback resistors from external to internal feedback resistors. The output voltage in each buck is programmable from 0.68 V to 1.95 V with 10-mV steps by I2C-controlled 7-bit VID.

Each buck converter in the TPS563900 device can also be I2C controlled for enabling and disabling the output voltage, reading the output voltage, setting the pulse skipping mode, and reading the power good status and the warning of die temperature.

The TPS563900 device features a dedicated enable pin when the I2C interface is not used. An independent soft-start pin provides flexibility in power-up programmability. Cycle-by-cycle overcurrent protection and hiccup-mode operation limit MOSFET power dissipation in short circuit or over-loading fault conditions. Low-side reverse overcurrent protection also prevents excessive sinking current from damaging the converter.

The TPS563900 device also features a light-load pulse-skipping mode (PSM) that can be controlled by the I2C or MODE pin configuration. The PSM mode allows a power loss reduction on the input power supplied to the system to achieve high efficiency at light loading.

The TPS563900 device is available in a 32-lead thermally-enhanced HTSSOP (DAP) package.

The TPS563900 device is a monolithic dual-synchronous buck converter with a wide 4.5-V to 18-V operating input-voltage range that can operate in
5-, 9-, 12-, or 15-V bus voltages and battery chemistries. Constant-frequency peak-current mode control simplifies the loop compensation and provides fast transient response.

External feedback resistors can be used to set the initial start-up voltage for each buck converter in the TPS563900 device. The feedback voltage reference for this start-up option is 0.6 V. When the voltage-identification (VID) DAC is updated through the I2C, the buck converter switches the feedback resistors from external to internal feedback resistors. The output voltage in each buck is programmable from 0.68 V to 1.95 V with 10-mV steps by I2C-controlled 7-bit VID.

Each buck converter in the TPS563900 device can also be I2C controlled for enabling and disabling the output voltage, reading the output voltage, setting the pulse skipping mode, and reading the power good status and the warning of die temperature.

The TPS563900 device features a dedicated enable pin when the I2C interface is not used. An independent soft-start pin provides flexibility in power-up programmability. Cycle-by-cycle overcurrent protection and hiccup-mode operation limit MOSFET power dissipation in short circuit or over-loading fault conditions. Low-side reverse overcurrent protection also prevents excessive sinking current from damaging the converter.

The TPS563900 device also features a light-load pulse-skipping mode (PSM) that can be controlled by the I2C or MODE pin configuration. The PSM mode allows a power loss reduction on the input power supplied to the system to achieve high efficiency at light loading.

The TPS563900 device is available in a 32-lead thermally-enhanced HTSSOP (DAP) package.

下载 观看带字幕的视频 视频

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 2
类型 标题 下载最新的英语版本 日期
* 数据表 4.5 to 18 V Input, 3.5 A/3.5 A Dual Synchronous Step-down Converter With I2C 数据表 2013年 12月 2日
EVM 用户指南 TPS563900 Buck Converter Evaluation Module User's Guide (Rev. A) PDF | HTML 2021年 7月 6日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

评估模块 (EVM) 用 GUI

SLVC558 TPS563900 GUI Software

支持的产品和硬件

支持的产品和硬件

产品
AC/DC & DC/DC converters (integrated FET)
TPS563900 具有电压调节功能的 18V 输入、3.5A/3.5A 双通道同步降压稳压器
仿真模型

TPS563900 Unencrypted PSpice Average Model Package (Rev. A)

SLVMA83A.ZIP (60 KB) - PSpice Model
仿真模型

TPS563900 Unencrypted PSpice Transient Model Package (Rev. A)

SLVMA84A.ZIP (49 KB) - PSpice Model
封装 引脚 下载
HTSSOP (DAP) 32 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频