ZHCSF48D March 2016  – May 2017 ISO7740 , ISO7741 , ISO7742

PRODUCTION DATA. 

  1. 特性
  2. 应用范围
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Power Rating
    6. 6.6 Insulation Specifications
    7. 6.7 Safety-Related Certifications
    8. 6.8 Safety Limiting Values
    9. 6.9 Electrical Characteristics—5-V Supply
    10. 6.10Supply Current Characteristics—5-V Supply
    11. 6.11Electrical Characteristics—3.3-V Supply
    12. 6.12Supply Current Characteristics—3.3-V Supply
    13. 6.13Electrical Characteristics—2.5-V Supply
    14. 6.14Supply Current Characteristics—2.5-V Supply
    15. 6.15Switching Characteristics—5-V Supply
    16. 6.16Switching Characteristics—3.3-V Supply
    17. 6.17Switching Characteristics—2.5-V Supply
    18. 6.18Insulation Characteristics Curves
    19. 6.19Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1Overview
    2. 8.2Functional Block Diagram
    3. 8.3Feature Description
      1. 8.3.1Electromagnetic Compatibility (EMC) Considerations
    4. 8.4Device Functional Modes
      1. 8.4.1Device I/O Schematics
  9. Application and Implementation
    1. 9.1Application Information
    2. 9.2Typical Application
      1. 9.2.1Design Requirements
      2. 9.2.2Detailed Design Procedure
      3. 9.2.3Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1Layout Guidelines
      1. 11.1.1PCB Material
    2. 11.2Layout Example
  12. 12器件和文档支持
    1. 12.1文档支持
      1. 12.1.1相关文档
    2. 12.2相关链接
    3. 12.3接收文档更新通知
    4. 12.4社区资源
    5. 12.5商标
    6. 12.6静电放电警告
    7. 12.7Glossary
  13. 13机械、封装和可订购信息

Specifications

Absolute Maximum Ratings

See (1)
MINMAXUNIT
VCC1, VCC2 Supply voltage(2) –0.56V
VVoltage at INx, OUTx, ENx–0.5VCCX + 0.5(3)V
IO Output current–1515mA
TJ Junction temperature150°C
Tstg Storage temperature –65 150°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values.
Maximum voltage must not exceed 6 V.

ESD Ratings

VALUEUNIT
V(ESD)Electrostatic dischargeHuman body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)±6000V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)±1500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

MINNOMMAXUNIT
VCC1, VCC2 Supply voltage2.255.5V
VCC(UVLO+) UVLO threshold when supply voltage is rising22.25V
VCC(UVLO-) UVLO threshold when supply voltage is falling1.71.8V
VHYS(UVLO)Supply voltage UVLO hysteresis100200mV
IOH High-level output currentVCCO(1) = 5 V–4mA
VCCO = 3.3 V–2
VCCO = 2.5 V–1
IOLLow-level output currentVCCO = 5 V4mA
VCCO = 3.3 V2
VCCO = 2.5 V1
VIH High-level input voltage0.7 × VCCI (1)VCCI V
VIL Low-level input voltage00.3 × VCCIV
DR Data rate0100Mbps
TAAmbient temperature–5525125°C
VCCI = Input-side VCC; VCCO = Output-side VCC.

Thermal Information

THERMAL METRIC(1) ISO774xUNIT
DW (SOIC)DBQ (QSOP)
16 Pins16 Pins
RθJA Junction-to-ambient thermal resistance 83.4109°C/W
RθJC(top) Junction-to-case(top) thermal resistance 4654.4°C/W
RθJB Junction-to-board thermal resistance 4851.9°C/W
ψJT Junction-to-top characterization parameter 19.114.2°C/W
ψJB Junction-to-board characterization parameter 47.551.4°C/W
RθJC(bottom) Junction-to-case(bottom) thermal resistance °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).

Power Rating

PARAMETER TEST CONDITIONSMINTYPMAXUNIT
ISO7740
PD Maximum power dissipationVCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 50-MHz 50% duty cycle square wave200mW
PD1 Maximum power dissipation by side-140mW
PD2 Maximum power dissipation by side-2160mW
ISO7741
PD Maximum power dissipationVCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 50-MHz 50% duty cycle square wave200mW
PD1 Maximum power dissipation by side-150mW
PD2 Maximum power dissipation by side-2150mW
ISO7742
PD Maximum power dissipationVCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 50-MHz 50% duty cycle square wave200mW
PD1 Maximum power dissipation by side-1100mW
PD2 Maximum power dissipation by side-2100mW

Insulation Specifications

PARAMETERTEST CONDITIONSVALUEUNIT
DW-16DBQ-16
CLRExternal clearance(1)Shortest terminal-to-terminal distance through air >8 >3.7mm
CPGExternal creepage(1)Shortest terminal-to-terminal distance across the package surface>8>3.7mm
DTIDistance through the insulationMinimum internal gap (internal clearance)>21>21μm
CTIComparative tracking indexDIN EN 60112 (VDE 0303-11); IEC 60112>600>600V
Material groupAccording to IEC 60664-1II
Overvoltage category per IEC 60664-1Rated mains voltage ≤ 300 VRMS I-IVI-III
Rated mains voltage ≤ 600 VRMS I-IVn/a
Rated mains voltage ≤ 1000 VRMS I-IIIn/a
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12(2)
VIORM Maximum repetitive peak isolation voltageAC voltage (bipolar) 1414566VPK
VIOWMMaximum isolation working voltageAC voltage; Time dependent dielectric breakdown (TDDB) Test 1000400VRMS
DC voltage 1414566VDC
VIOTM Maximum transient isolation voltageVTEST = VIOTM
t = 60 s (qualification)
t= 1 s (100% production)
80003600VPK
VIOSMMaximum surge isolation voltage(3)Test method per IEC 60065, 1.2/50 µs waveform,
VTEST = 1.6 × VIOSM (qualification)
80004000VPK
qpd Apparent charge(4)Method a, After Input/Output safety test subgroup 2/3,
Vini = VIOTM, tini = 60 s;
Vpd(m) = 1.2 × VIORM, tm = 10 s
≤5≤5pC
Method a, After environmental tests subgroup 1,
Vini = VIOTM, tini = 60 s;
Vpd(m) = 1.6 × VIORM, tm = 10 s
≤5≤5
Method b1; At routine test (100% production) and preconditioning (type test)
Vini = VIOTM, tini = 1 s;
Vpd(m) = 1.875 × VIORM, tm = 1 s
≤5≤5
CIOBarrier capacitance, input to output(5)VIO = 0.4 × sin (2πft), f = 1 MHz~1~1pF
RIOIsolation resistance(5)VIO = 500 V, TA = 25°C>1012 >1012 Ω
VIO = 500 V, 100°C ≤ TA ≤ 125°C>1011>1011
VIO = 500 V at TS = 150°C>109 >109
Pollution degree 22
Climatic category55/125/2155/125/21
UL 1577
VISO Maximum withstanding isolation voltageVTEST = VISO , t = 60 s (qualification),
VTEST = 1.2 × VISO , t = 1 s (100% production)
50002500VRMS
Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.
This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
Apparent charge is electrical discharge caused by a partial discharge (pd).
All pins on each side of the barrier tied together creating a two-terminal device.

Safety-Related Certifications

DW package devices certified. All other certifications are planned.
VDECSAULCQCTUV
Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 Certified under CSA Component Acceptance Notice 5A, IEC 60950-1 and IEC 60601-1Certified according to UL 1577 Component Recognition Program Certified according to GB 4943.1-2011Certified according to EN 61010-1:2010 (3rd Ed) and EN 60950-1:2006/A11:2009/A1:2010/A12:2011/A2:2013
Maximum transient isolation voltage, 8000 VPK (DW-16) and 3600 VPK (DBQ-16);
Maximum repetitive peak isolation voltage, 1414 VPK (DW-16, Reinforced) and 566 VPK (DBQ-16);
Maximum surge isolation voltage, 8000 VPK (DW-16) and 4000 VPK (DBQ-16)
Reinforced insulation per CSA 60950-1-07+A1+A2 and IEC 60950-1 2nd Ed.,
800 VRMS (DW-16) and 370 VRMS (DBQ-16) max working voltage (pollution degree 2, material group I);
2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 250 VRMS (DW-16) max working voltage
DW-16: Single protection, 5000 VRMS;
DBQ-16: Single protection, 2500 VRMS
DW-16: Reinforced Insulation, Altitude ≤ 5000 m, Tropical Climate, 400 VRMS maximum working voltage;
DBQ-16: Basic Insulation, Altitude ≤ 5000 m, Tropical Climate, 250 VRMS maximum working voltage
5000 VRMS (DW-16) and 2500 VRMS (DBQ-16) Reinforced insulation per EN 61010-1:2010 (3rd Ed) up to working voltage of 600 VRMS (DW-16) and 300 VRMS (DBQ-16)
5000 VRMS (DW-16) and 2500 VRMS (DBQ-16) Reinforced insulation per EN 60950-1:2006/A11:2009/A1:2010/A12:2011/A2:2013 up to working voltage of 800 VRMS (DW-16) and 370 VRMS (DBQ-16)
Certificate number: 40040142 Master contract number: 220991File number: E181974 Certificate number: CQC15001121716Client ID number: 77311

Safety Limiting Values

Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
DW-16 PACKAGE
ISSafety input, output, or supply currentRθJA = 83.4 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 1273mA
RθJA = 83.4 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 1416
RθJA = 83.4 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 1 545
PSSafety input, output, or total power RθJA = 83.4 °C/W, TJ = 150°C, TA = 25°C, see Figure 3 1499mW
TS Maximum safety temperature150°C
DBQ-16 PACKAGE
ISSafety input, output, or supply current RθJA = 109 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 2209mA
RθJA = 109 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 2319
RθJA = 109 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 2417
PSSafety input, output, or total power RθJA = 109 °C/W, TJ = 150°C, TA = 25°C, see Figure 4 1147mW
TS Maximum safety temperature150°C
The maximum safety temperature is the maximum junction temperature specified for the device. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information is that of a device installed on a High-K test board for leaded Surface Mount Packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance

Electrical Characteristics—5-V Supply

VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
VOHHigh-level output voltageIOH = –4 mA; see Figure 15VCCO(1) – 0.44.8V
VOLLow-level output voltageIOL = 4 mA; see Figure 150.20.4V
VIT+(IN)Rising input voltage threshold0.6 × VCCI0.7 × VCCIV
VIT-(IN)Falling input voltage threshold0.3 × VCCI0.4 × VCCIV
VI(HYS)Input threshold voltage hysteresis0.1 × VCCI0.2 × VCCIV
IIHHigh-level input currentVIH = VCCI(1) at INx or ENx10μA
IILLow-level input currentVIL = 0 V at INx or ENx–10μA
CMTICommon-mode transient immunity VI = VCCI or 0 V, VCM = 1200 V; see Figure 1885100kV/μs
CIInput Capacitance(2)VI = VCC/ 2 + 0.4×sin(2πft), f = 1 MHz,
VCC = 5 V
2pF
VCCI = Input-side VCC; VCCO = Output-side VCC.
Measured from input pin to ground.

Supply Current Characteristics—5-V Supply

VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted).
PARAMETERTEST CONDITIONSSUPPLY CURRENTMINTYPMAXUNIT
ISO7740
Supply current - DisableEN2 = 0 V; VI = VCC1 (ISO7740);
VI = 0 V (ISO7740 with F suffix)
ICC11.21.6mA
ICC20.30.5
EN2 = 0 V; VI = 0 V (ISO7740);
VI = VCC1 (ISO7740 with F suffix)
ICC15.57.8
ICC20.30.5
Supply current - DC signalEN2 = VCC2; VI = VCC1 (ISO7740);
VI = 0 V (ISO7740 with F suffix)
ICC11.21.6
ICC223.2
EN2 = VCC2; VI = 0 V (ISO7740);
VI = VCC1 (ISO7740 with F suffix)
ICC15.57.8
ICC22.23.6
Supply current - AC signalAll channels switching with square wave clock input; CL = 15 pF1 MbpsICC13.34.7
ICC22.33.6
10 MbpsICC13.44.8
ICC24.25.8
100 MbpsICC13.85.7
ICC222.728
ISO7741
Supply current - DisableEN1 = EN2 = 0 V; VI = VCCI(1) (ISO7741);
VI = 0 V (ISO7741 with F suffix)
ICC111.5mA
ICC20.81.1
EN1 = EN2 = 0 V; VI = 0 V (ISO7741);
VI = VCCI (ISO7741 with F suffix)
ICC14.36.3
ICC21.82.7
Supply current - DC signalEN1 = EN2 = VCCI; VI = VCCI (ISO7741);
VI = 0 V (ISO7741 with F suffix)
ICC11.52.3
ICC223
EN1 = EN2 = VCCI; VI = 0 V (ISO7741);
VI = VCCI (ISO7741 with F suffix)
ICC14.86.8
ICC23.24.9
Supply current - AC signalAll channels switching with square wave clock input; CL = 15 pF1 MbpsICC13.24.6
ICC22.84.1
10 MbpsICC13.75.2
ICC24.25.7
100 MbpsICC18.611.3
ICC21822
ISO7742
Supply current - DisableEN1 = EN2 = 0 V; VI = VCCI (ISO7742);
VI = 0 V (ISO7742 with F suffix)
ICC1, ICC20.91.3mA
EN1 = EN2 = 0 V; VI = 0 V (ISO7742);
VI = VCCI (ISO7742 with F suffix)
ICC1, ICC234.6
Supply current - DC signalEN1 = EN2 = VCCI; VI = VCCI (ISO7742);
VI = 0 V (ISO7742 with F suffix)
ICC1, ICC21.72.7
EN1 = EN2 = VCCI; VI = 0 V (ISO7742);
VI = VCCI (ISO7742 with F suffix)
ICC1, ICC245.9
Supply current - AC signalAll channels switching with square wave clock input; CL = 15 pF1 MbpsICC1, ICC234.4
10 MbpsICC1, ICC245.5
100 MbpsICC1, ICC213.417
VCCI = Input-side VCC

Electrical Characteristics—3.3-V Supply

VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
VOHHigh-level output voltageIOH = –2 mA; see Figure 15VCCO(1) – 0.33.2V
VOLLow-level output voltageIOL = 2 mA; see Figure 150.10.3V
VIT+(IN)Rising input voltage threshold0.6 × VCCI0.7 × VCCIV
VIT-(IN)Falling input voltage threshold0.3 × VCCI0.4 × VCCIV
VI(HYS)Input threshold voltage hysteresis0.1 × VCCI0.2 × VCCIV
IIHHigh-level input currentVIH = VCCI(1) at INx or ENx10μA
IILLow-level input currentVIL = 0 V at INx or ENx–10μA
CMTICommon-mode transient immunity VI = VCCI or 0 V, VCM = 1200 V; see Figure 1885100kV/μs
VCCI = Input-side VCC; VCCO = Output-side VCC.

Supply Current Characteristics—3.3-V Supply

VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted).
PARAMETERTEST CONDITIONSSUPPLY CURRENTMINTYPMAXUNIT
ISO7740
Supply current - DisableEN2 = 0 V; VI = VCC1 (ISO7740);
VI = 0 V (ISO7740 with F suffix)
ICC11.21.6mA
ICC20.30.5
EN2 = 0 V; VI = 0 V (ISO7740);
VI = VCC1 (ISO7740 with F suffix)
ICC15.57.8
ICC20.30.5
Supply current - DC signalEN2 = VCC2; VI = VCC1 (ISO7740);
VI = 0 V (ISO7740 with F suffix)
ICC11.21.6
ICC21.93.2
EN2 = VCC2; VI = 0 V (ISO7740);
VI = VCC1 (ISO7740 with F suffix)
ICC15.57.8
ICC22.23.6
Supply current - AC signalAll channels switching with square wave clock input; CL = 15 pF1 MbpsICC13.34.7
ICC22.23.6
10 MbpsICC13.44.8
ICC23.65
100 MbpsICC13.35.5
ICC21720
ISO7741
Supply current - DisableEN1 = EN2 = 0 V; VI = VCCI(1) (ISO7741);
VI = 0 V (ISO7741 with F suffix)
ICC111.5mA
ICC20.81.1
EN1 = EN2 = 0 V; VI = 0 V (ISO7741);
VI = VCCI (ISO7741 with F suffix)
ICC14.36.3
ICC21.92.7
Supply current - DC signalEN1 = EN2 = VCCI; VI = VCCI (ISO7741);
VI = 0 V (ISO7741 with F suffix)
ICC11.52.3
ICC223
EN1 = EN2 = VCCI; VI = 0 V (ISO7741);
VI = VCCI (ISO7741 with F suffix)
ICC14.86.8
ICC23.24.9
Supply current - AC signalAll channels switching with square wave clock input; CL = 15 pF1 MbpsICC13.24.6
ICC22.74.1
10 MbpsICC13.55
ICC23.75.2
100 MbpsICC16.89.3
ICC213.716.4
ISO7742
Supply current - DisableEN1 = EN2 = 0 V; VI = VCCI (ISO7742);
VI = 0 V (ISO7742 with F suffix)
ICC1, ICC20.91.3mA
EN1 = EN2 = 0 V; VI = 0 V (ISO7742);
VI = VCCI (ISO7742 with F suffix)
ICC1, ICC234.6
Supply current - DC signalEN1 = EN2 = VCCI; VI = VCCI (ISO7742);
VI = 0 V (ISO7742 with F suffix)
ICC1, ICC21.72.7
EN1 = EN2 = VCCI; VI = 0 V (ISO7742);
VI = VCCI (ISO7742 with F suffix)
ICC1, ICC245.9
Supply current - AC signalAll channels switching with square wave clock input; CL = 15 pF1 MbpsICC1, ICC22.94.3
10 MbpsICC1, ICC23.65.1
100 MbpsICC1, ICC210.313
VCCI = Input-side VCC

Electrical Characteristics—2.5-V Supply

VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
VOHHigh-level output voltageIOH = –1 mA; see Figure 15VCCO(1) – 0.22.45 V
VOLLow-level output voltageIOL = 1 mA; see Figure 150.050.2V
VIT+(IN)Rising input voltage threshold0.6 × VCCI0.7 × VCCIV
VIT-(IN)Falling input voltage threshold0.3 × VCCI0.4 × VCCIV
VI(HYS)Input threshold voltage hysteresis0.1 × VCCI0.2 × VCCIV
IIHHigh-level input currentVIH = VCCI(1) at INx or ENx10μA
IILLow-level input currentVIL = 0 V at INx or ENx–10μA
CMTICommon-mode transient immunity VI = VCCI or 0 V, VCM = 1200 V; see Figure 1885100kV/μs
VCCI = Input-side VCC; VCCO = Output-side VCC.

Supply Current Characteristics—2.5-V Supply

VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted).
PARAMETERTEST CONDITIONSSUPPLY CURRENTMINTYPMAXUNIT
ISO7740
Supply current - Disable EN2 = 0 V; VI = VCC1 (ISO7740);
VI = 0 V (ISO7740 with F suffix)
ICC11.21.6mA
ICC20.30.5
EN2 = 0 V; VI = 0 V (ISO7740);
VI = VCC1 (ISO7740 with F suffix)
ICC15.57.8
ICC20.30.5
Supply current - DC signalEN2 = VCC2; VI = VCC1 (ISO7740);
VI = 0 V (ISO7740 with F suffix)
ICC11.21.6
ICC21.93.2
EN2 = VCC2; VI = 0 V (ISO7740);
VI = VCC1 (ISO7740 with F suffix)
ICC15.47.8
ICC22.23.6
Supply current - AC signalAll channels switching with square wave clock input; CL = 15 pF1 MbpsICC13.34.7
ICC22.23.5
10 MbpsICC13.44.8
ICC23.24.7
100 MbpsICC13.25.4
ICC21317
ISO7741
Supply current - DisableEN1 = EN2 = 0 V; VI = VCCI(1) (ISO7741);
VI = 0 V (ISO7741 with F suffix)
ICC111.5mA
ICC20.81.1
EN1 = EN2 = 0 V; VI = 0 V (ISO7741);
VI = VCCI (ISO7741 with F suffix)
ICC14.36.3
ICC21.82.7
Supply current - DC signalEN1 = EN2 = VCCI; VI = VCCI (ISO7741);
VI = 0 V (ISO7741 with F suffix)
ICC11.42.3
ICC223
EN1 = EN2 = VCCI; VI = 0 V (ISO7741);
VI = VCCI (ISO7741 with F suffix)
ICC14.76.8
ICC23.24.9
Supply current - AC signalAll channels switching with square wave clock input; CL = 15 pF1 MbpsICC13.14.6
ICC22.74
10 MbpsICC13.44.9
ICC23.54.9
100 MbpsICC15.68.3
ICC210.813.8
ISO7742
Supply current - DisableEN1 = EN2 = 0 V; VI = VCCI (ISO7742);
VI = 0 V (ISO7742 with F suffix)
ICC1, ICC20.91.3mA
EN1 = EN2 = 0 V; VI = 0 V (ISO7742);
VI = VCCI (ISO7742 with F suffix)
ICC1, ICC234.6
Supply current - DC signalEN1 = EN2 = VCCI; VI = VCCI (ISO7742);
VI = 0 V (ISO7742 with F suffix)
ICC1, ICC21.72.7
EN1 = EN2 = VCCI; VI = 0 V (ISO7742);
VI = VCCI (ISO7742 with F suffix)
ICC1, ICC245.9
Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF1 MbpsICC1, ICC22.94.3
10 MbpsICC1, ICC23.44.9
100 MbpsICC1, ICC28.311.5
VCCI = Input-side VCC

Switching Characteristics—5-V Supply

VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
tPLH, tPHL Propagation delay timeSee Figure 15 610.716ns
PWD Pulse width distortion(1) |tPHL – tPLH|04.9ns
tsk(o) Channel-to-channel output skew time(2)Same-direction channels4ns
tsk(pp) Part-to-part skew time(3)4.4ns
tr Output signal rise timeSee Figure 15 2.43.9ns
tf Output signal fall time2.43.9ns
tPHZ Disable propagation delay, high-to-high impedance outputSee Figure 16 920ns
tPLZ Disable propagation delay, low-to-high impedance output920ns
tPZH Enable propagation delay, high impedance-to-high output for ISO774x720ns
Enable propagation delay, high impedance-to-high output for ISO774x with F suffix38.5μs
tPZL Enable propagation delay, high impedance-to-low output for ISO774x38.5μs
Enable propagation delay, high impedance-to-low output for ISO774x with F suffix720ns
tDO Default output delay time from input power loss Measured from the time VCC goes below 1.7 V. See 0.10.3μs
tieTime interval error216 – 1 PRBS data at 100 Mbps0.8ns
Also known as pulse skew.
tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

Switching Characteristics—3.3-V Supply

VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
tPLH, tPHL Propagation delay timeSee Figure 15 61116ns
PWD Pulse width distortion(1) |tPHL – tPLH|0.15ns
tsk(o) Channel-to-channel output skew time(2)Same-direction channels4.1ns
tsk(pp) Part-to-part skew time(3)4.5ns
tr Output signal rise timeSee Figure 15 1.33ns
tf Output signal fall time1.33ns
tPHZ Disable propagation delay, high-to-high impedance outputSee Figure 16 1730ns
tPLZ Disable propagation delay, low-to-high impedance output1730ns
tPZH Enable propagation delay, high impedance-to-high output for ISO774x1730ns
Enable propagation delay, high impedance-to-high output for ISO774x with F suffix3.28.5μs
tPZL Enable propagation delay, high impedance-to-low output for ISO774x3.28.5μs
Enable propagation delay, high impedance-to-low output for ISO774x with F suffix1730ns
tDO Default output delay time from input power loss Measured from the time VCC goes below 1.7 V. See 0.10.3μs
tieTime interval error216 – 1 PRBS data at 100 Mbps0.9ns
Also known as pulse skew.
tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

Switching Characteristics—2.5-V Supply

VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
tPLH, tPHL Propagation delay timeSee Figure 15 7.51218.5ns
PWD Pulse width distortion(1) |tPHL – tPLH|0.25.1ns
tsk(o) Channel-to-channel output skew time(2)Same-direction Channels4.1ns
tsk(pp) Part-to-part skew time(3)4.6ns
tr Output signal rise timeSee Figure 15 13.5ns
tf Output signal fall time13.5ns
tPHZ Disable propagation delay, high-to-high impedance outputSee Figure 16 2240ns
tPLZ Disable propagation delay, low-to-high impedance output2240ns
tPZH Enable propagation delay, high impedance-to-high output for ISO774x1840ns
Enable propagation delay, high impedance-to-high output for ISO774x with F suffix3.38.5μs
tPZL Enable propagation delay, high impedance-to-low output for ISO774x3.38.5μs
Enable propagation delay, high impedance-to-low output for ISO774x with F suffix1840ns
tDO Default output delay time from input power loss Measured from the time VCC goes below 1.7 V. See 0.10.3μs
tieTime interval error216 – 1 PRBS data at 100 Mbps0.7ns
Also known as pulse skew.
tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

Insulation Characteristics Curves

ISO7740 ISO7741 ISO7742 D001_SLLSEP4.gif
Figure 1. Thermal Derating Curve for Safety Limiting Current for
DW-16 Package
ISO7740 ISO7741 ISO7742 D003_SLLSEP4.gif
Figure 3. Thermal Derating Curve for Safety Limiting Power for DW-16 Package
ISO7740 ISO7741 ISO7742 D002_SLLSEP4.gif
Figure 2. Thermal Derating Curve for Safety Limiting Current for
DBQ-16 Package
ISO7740 ISO7741 ISO7742 D004_SLLSEP4.gif
Figure 4. Thermal Derating Curve for Safety Limiting Power for DBQ-16 Package

Typical Characteristics

ISO7740 ISO7741 ISO7742 D005_SLLSEP4.gif
TA = 25°C CL = 15 pF
Figure 5. ISO7740 Supply Current vs Data Rate
(With 15-pF Load)
ISO7740 ISO7741 ISO7742 D007_SLLSEP4.gif
TA = 25°C CL = 15 pF
Figure 7. ISO7741 Supply Current vs Data Rate
(With 15-pF Load)
ISO7740 ISO7741 ISO7742 D009_SLLSEP4.gif
TA = 25°C CL = 15 pF
Figure 9. ISO7742 Supply Current vs Data Rate
(With 15-pF Load)
ISO7740 ISO7741 ISO7742 D011_SLLSEP4.gif
TA = 25°C
Figure 11. High-Level Output Voltage vs High-level Output Current
ISO7740 ISO7741 ISO7742 D013_SLLSEP4.gif
Figure 13. Power Supply Undervoltage Threshold vs Free-Air Temperature
ISO7740 ISO7741 ISO7742 D006_SLLSEP4.gif
TA = 25°C CL = No Load
Figure 6. ISO7740 Supply Current vs Data Rate
(With No Load)
ISO7740 ISO7741 ISO7742 D008_SLLSEP4.gif
TA = 25°C CL = No Load
Figure 8. ISO7741 Supply Current vs Data Rate
(With No Load)
ISO7740 ISO7741 ISO7742 D010_SLLSEP4.gif
TA = 25°C CL = No Load
Figure 10. ISO7742 Supply Current vs Data Rate
(With No Load)
ISO7740 ISO7741 ISO7742 D012_SLLSEP4.gif
TA = 25°C
Figure 12. Low-Level Output Voltage vs Low-Level Output Current
ISO7740 ISO7741 ISO7742 D014_SLLSEP4.gif
Figure 14. Propagation Delay Time vs Free-Air Temperature