ZHCU876Z July   2001  – October 2023 SM320F28335-EP

 

  1.   1
  2.   请先阅读
    1.     关于本手册
    2.     标记规则
    3.     相关文档
    4.     德州仪器 (TI) 提供的相关文档
    5.     商标
  3. 软件开发工具简介
    1. 1.1 软件开发工具概述
    2. 1.2 编译器接口
    3. 1.3 ANSI/ISO 标准
    4. 1.4 输出文件
    5. 1.5 实用程序
  4. 使用 C/C++ 编译器
    1. 2.1  关于编译器
    2. 2.2  调用 C/C++ 编译器
    3. 2.3  使用选项更改编译器的行为
      1. 2.3.1  链接器选项
      2. 2.3.2  常用选项
      3. 2.3.3  其他有用的选项
      4. 2.3.4  运行时模型选项
      5. 2.3.5  符号调试和分析选项
      6. 2.3.6  指定文件名
      7. 2.3.7  更改编译器解释文件名的方式
      8. 2.3.8  更改编译器处理 C 文件的方式
      9. 2.3.9  更改编译器解释和命名扩展名的方式
      10. 2.3.10 指定目录
      11. 2.3.11 汇编器选项
      12. 2.3.12 已弃用的选项
    4. 2.4  通过环境变量控制编译器
      1. 2.4.1 设置默认编译器选项 (C2000_C_OPTION)
      2. 2.4.2 命名一个或多个备用目录 (C2000_C_DIR)
    5. 2.5  控制预处理器
      1. 2.5.1  预先定义的宏名称
      2. 2.5.2  #include 文件的搜索路径
        1. 2.5.2.1 在 #include 文件搜索路径(--include_path 选项)中新增目录
      3. 2.5.3  支持#warning 和 #warn 指令
      4. 2.5.4  生成预处理列表文件(--preproc_only 选项)
      5. 2.5.5  预处理后继续编译(--preproc_with_compile 选项)
      6. 2.5.6  生成带有注释的预处理列表文件(--preproc_with_comment 选项)
      7. 2.5.7  生成带有行控制详细信息的预处理列表(--preproc_with_line 选项)
      8. 2.5.8  为 Make 实用程序生成预处理输出(--preproc_dependency 选项)
      9. 2.5.9  生成包含#include在内的文件列表(--preproc_includes 选项)
      10. 2.5.10 在文件中生成宏列表(--preproc_macros 选项)
    6. 2.6  将参数传递给 main()
    7. 2.7  了解诊断消息
      1. 2.7.1 控制诊断消息
      2. 2.7.2 如何使用诊断抑制选项
    8. 2.8  其他消息
    9. 2.9  生成交叉参考列表信息(--gen_cross_reference_listing 选项)
    10. 2.10 生成原始列表文件(--gen_preprocessor_listing 选项)
    11. 2.11 使用内联函数扩展
      1. 2.11.1 内联内在函数运算符
      2. 2.11.2 内联限制
      3. 2.11.3 不受保护定义控制的内联
        1. 2.11.3.1 使用内联关键字
      4. 2.11.4 保护内联和 _INLINE 预处理器符号
        1. 2.11.4.1 头文件 string.h
        2. 2.11.4.2 库定义文件
    12. 2.12 使用交叉列出功能
    13. 2.13 关于应用程序二进制接口
    14. 2.14 启用入口挂钩和出口挂钩函数
    15. 2.15 实时固件更新 (LFU)
  5. 优化您的代码
    1. 3.1  调用优化
    2. 3.2  控制代码大小与速度
    3. 3.3  执行文件级优化(--opt_level=3 选项)
      1. 3.3.1 创建优化信息文件(--gen_opt_info 选项)
    4. 3.4  程序级优化(--program_level_compile 和 --opt_level=3 选项)
      1. 3.4.1 控制程序级优化(--call_assumptions 选项)
      2. 3.4.2 混合 C/C++ 和汇编代码时的优化注意事项
    5. 3.5  自动内联扩展(--auto_inline 选项)
    6. 3.6  链接时优化(--opt_level=4 选项)
      1. 3.6.1 选项处理
      2. 3.6.2 不兼容的类型
    7. 3.7  使用反馈制导优化
      1. 3.7.1 反馈向导优化
        1. 3.7.1.1 第 1 阶段 - 收集程序分析信息
        2. 3.7.1.2 第 2 阶段 - 使用应用程序分析信息进行优化
        3. 3.7.1.3 生成和使用配置文件信息
        4. 3.7.1.4 反馈制导优化的应用示例
        5. 3.7.1.5 .ppdata 段
        6. 3.7.1.6 反馈制导优化和代码大小调整
        7. 3.7.1.7 检测程序执行开销
        8. 3.7.1.8 无效的分析数据
      2. 3.7.2 分析数据解码器
      3. 3.7.3 反馈制导优化 API
      4. 3.7.4 反馈制导优化总结
    8. 3.8  使用配置文件信息分析代码覆盖率
      1. 3.8.1 代码覆盖
        1. 3.8.1.1 第 1 阶段 - 收集程序分析信息
        2. 3.8.1.2 第 2 阶段 -- 生成代码覆盖信息报告
      2. 3.8.2 相关的特征和功能
        1. 3.8.2.1 路径分析器
        2. 3.8.2.2 分析选项
        3. 3.8.2.3 环境变量
    9. 3.9  使用优化时的特殊注意事项
      1. 3.9.1 在优化代码中谨慎使用 asm 语句
      2. 3.9.2 使用易失性关键字进行必要的内存访问
        1. 3.9.2.1 访问别名变量时的注意事项
        2. 3.9.2.2 使用 --aliased_variables 选项来指示采用了以下技术
        3. 3.9.2.3 仅在 FPU 目标上:使用 restrict 关键字指示指针没有别名
          1. 3.9.2.3.1 restrict 类型限定符与指针搭配使用
          2. 3.9.2.3.2 restrict 类型限定符与指针搭配使用
    10. 3.10 通过优化使用交叉列出特性
    11. 3.11 数据页 (DP) 指针加载优化
    12. 3.12 调试和分析优化代码
      1. 3.12.1 分析优化的代码
    13. 3.13 提高代码大小优化级别(--opt_for_space 选项)
    14. 3.14 编译器支持重入 VCU 代码
    15. 3.15 编译器支持生成DMAC 指令
      1. 3.15.1 自动生成 DMAC 指令
      2. 3.15.2 指定数据地址对齐的断言
      3. 3.15.3 __dmac 内在函数
    16. 3.16 正在执行什么类型的优化?
      1. 3.16.1  基于成本的寄存器分配
      2. 3.16.2  别名消歧
      3. 3.16.3  分支优化和控制流简化
      4. 3.16.4  数据流优化
      5. 3.16.5  表达式简化
      6. 3.16.6  函数的内联扩展
      7. 3.16.7  函数符号别名
      8. 3.16.8  归纳变量和强度降低
      9. 3.16.9  循环不变量代码运动
      10. 3.16.10 循环旋转
      11. 3.16.11 指令排程
      12. 3.16.12 寄存器变量
      13. 3.16.13 寄存器跟踪/定位
      14. 3.16.14 尾部合并
      15. 3.16.15 自动增量寻址
      16. 3.16.16 删除与零的比较
      17. 3.16.17 RPTB 生成(仅适用于FPU 目标)
  6. 链接 C/C++ 代码
    1. 4.1 通过编译器调用链接器(-z 选项)
      1. 4.1.1 单独调用链接器
      2. 4.1.2 调用链接器作为编译步骤的一部分
      3. 4.1.3 禁用链接器(--compile_only 编译器选项)
    2. 4.2 链接器代码优化
      1. 4.2.1 生成函数子段(--gen_func_subsections 编译器选项)
      2. 4.2.2 生成聚合数据子段(--gen_data_subsections 编译器选项)
    3. 4.3 控制链接过程
      1. 4.3.1 包含运行时支持库
        1. 4.3.1.1 自动选择运行时支持库
          1. 4.3.1.1.1 使用 --issue_remarks 选项
        2. 4.3.1.2 手动选择运行时支持库
        3. 4.3.1.3 用于搜索符号的库顺序
      2. 4.3.2 运行时初始化
      3. 4.3.3 通过中断向量进行初始化
      4. 4.3.4 全局对象构造函数
      5. 4.3.5 指定全局变量初始化类型
      6. 4.3.6 指定在内存中分配段的位置
      7. 4.3.7 链接器命令文件示例
    4. 4.4 链接 C28x 和 C2XLP 代码
  7. 链接后优化器
    1. 5.1 链接后优化器在软件开发流程中的作用
    2. 5.2 删除冗余 DP 负载
    3. 5.3 跟踪跨分支的 DP 值
    4. 5.4 跟踪跨函数调用的 DP 值
    5. 5.5 其他链接后优化
    6. 5.6 控制链接后优化
      1. 5.6.1 排除文件(-ex 选项)
      2. 5.6.2 控制汇编文件中的链接后优化
      3. 5.6.3 保留链接后优化器输出(--keep_asm 选项)
      4. 5.6.4 禁用跨函数调用的优化(-nf 选项)
      5. 5.6.5 使用建议对汇编代码进行注释(--plink_advice_only 选项)
    7. 5.7 有关使用链接后优化器的限制
    8. 5.8 命名输出文件(--output_file 选项)
  8. C/C++ 语言实现
    1. 6.1  TMS320C28x C 的特征
      1. 6.1.1 实现定义的行为
    2. 6.2  TMS320C28x C++ 的特征
    3. 6.3  数据类型
      1. 6.3.1 枚举类型大小
      2. 6.3.2 支持 64 位整数
      3. 6.3.3 C28x double 和 long double 浮点类型
    4. 6.4  文件编码和字符集
    5. 6.5  关键字
      1. 6.5.1 const 关键字
      2. 6.5.2 __cregister 关键字
      3. 6.5.3 __interrupt 关键字
      4. 6.5.4 restrict 关键字
      5. 6.5.5 volatile 关键字
    6. 6.6  C++ 异常处理
    7. 6.7  寄存器变量和参数
    8. 6.8  __asm 语句
    9. 6.9  pragma 指令
      1. 6.9.1  CALLS Pragma
      2. 6.9.2  CLINK Pragma
      3. 6.9.3  CODE_ALIGN Pragma
      4. 6.9.4  CODE_SECTION Pragma
      5. 6.9.5  DATA_ALIGN Pragma
      6. 6.9.6  DATA_SECTION Pragma
        1. 6.9.6.1 使用 DATA_SECTION Pragma C 源文件
        2. 6.9.6.2 使用 DATA_SECTION Pragma C++ 源文件
        3. 6.9.6.3 使用 DATA_SECTION Pragma 汇编源文件
      7. 6.9.7  诊断消息 Pragma
      8. 6.9.8  FAST_FUNC_CALL Pragma
      9. 6.9.9  FORCEINLINE Pragma
      10. 6.9.10 FORCEINLINE_RECURSIVE Pragma
      11. 6.9.11 FUNC_ALWAYS_INLINE Pragma
      12. 6.9.12 FUNC_CANNOT_INLINE Pragma
      13. 6.9.13 FUNC_EXT_CALLED Pragma
      14. 6.9.14 FUNCTION_OPTIONS Pragma
      15. 6.9.15 INTERRUPT Pragma
      16. 6.9.16 LOCATION Pragma
      17. 6.9.17 MUST_ITERATE Pragma
        1. 6.9.17.1 MUST_ITERATE Pragma 语法
        2. 6.9.17.2 使用 MUST_ITERATE 扩展编译器对循环的了解
      18. 6.9.18 NOINIT 和 PERSISTENT Pragma
      19. 6.9.19 NOINLINE Pragma
      20. 6.9.20 NO_HOOKS Pragma
      21. 6.9.21 once Pragma
      22. 6.9.22 RETAIN Pragma
      23. 6.9.23 SET_CODE_SECTION 和 SET_DATA_SECTION Pragma
      24. 6.9.24 UNROLL Pragma
      25. 6.9.25 WEAK Pragma
    10. 6.10 _Pragma 运算符
    11. 6.11 应用程序二进制接口
    12. 6.12 目标文件符号命名规则(链接名)
    13. 6.13 在 COFF ABI 模式下初始化静态和全局变量
      1. 6.13.1 使用链接器初始化静态和全局变量
      2. 6.13.2 使用常量类型限定符初始化静态和全局变量
    14. 6.14 更改 ANSI/ISO C/C++ 语言模式
      1. 6.14.1 C99 支持 (--c99)
      2. 6.14.2 C11 支持 (--c11)
      3. 6.14.3 严格 ANSI 模式和宽松 ANSI 模式(--strict_ansi 和 --relaxed_ansi)
    15. 6.15 GNU 和 Clang 语言扩展
      1. 6.15.1 扩展
      2. 6.15.2 函数属性
      3. 6.15.3 For 循环属性
      4. 6.15.4 变量属性
      5. 6.15.5 类型属性
      6. 6.15.6 内置函数
      7. 6.15.7 使用字节外设类型属性
    16. 6.16 编译器限制
  9. 运行时环境
    1. 7.1  存储器模型
      1. 7.1.1
      2. 7.1.2 C/C++ 系统堆栈
      3. 7.1.3 将 .econst 分配给程序内存
      4. 7.1.4 动态存储器分配
      5. 7.1.5 变量的初始化
      6. 7.1.6 为静态变量和全局变量分配内存
      7. 7.1.7 字段/结构对齐
      8. 7.1.8 字符串常量
    2. 7.2  寄存器惯例
      1. 7.2.1 TMS320C28x 寄存器的使用和保留
      2. 7.2.2 状态寄存器
    3. 7.3  函数结构和调用惯例
      1. 7.3.1 函数如何进行调用
      2. 7.3.2 被调用函数如何响应
      3. 7.3.3 被调用函数的特殊情况(大帧)
      4. 7.3.4 访问参数和局部变量
      5. 7.3.5 分配帧并访问内存中的 32 位值
    4. 7.4  访问 C 和 C++ 中的链接器符号
    5. 7.5  将 C 和 C++ 与汇编语言相连
      1. 7.5.1 使用汇编语言模块与 C/C++ 代码
      2. 7.5.2 从 C/C++ 访问汇编语言函数
        1. 7.5.2.1 从 C/C++ 程序调用汇编语言函数
        2. 7.5.2.2 由 调用的汇编语言程序
        3.       261
      3. 7.5.3 从 C/C++ 访问汇编语言变量
        1. 7.5.3.1 访问汇编语言全局变量
          1. 7.5.3.1.1 汇编语言变量程序
          2. 7.5.3.1.2 C 程序从 中访问汇编语言
        2.       266
        3. 7.5.3.2 访问汇编语言常量
          1. 7.5.3.2.1 从 C 语言访问汇编语言常量
          2. 7.5.3.2.2 的汇编语言程序
          3.        270
      4. 7.5.4 与汇编源代码共享 C/C++ 头文件
      5. 7.5.5 使用内联汇编语言
    6. 7.6  使用内在函数访问汇编语言语句
      1. 7.6.1 浮点转换内在函数
      2. 7.6.2 浮点单元 (FPU) 内在函数
      3. 7.6.3 三角函数加速器 (TMU) 固有函数
      4. 7.6.4 快速整数除法内在函数
    7. 7.7  中断处理
      1. 7.7.1 有关中断的要点
      2. 7.7.2 使用 C/C++ 中断例程
    8. 7.8  整数表达式分析
      1. 7.8.1 使用运行时支持调用计算的运算
      2. 7.8.2 支持快速整数除法的除法运算
      3. 7.8.3 C/C++ 代码访问 16 位乘法的上 16 位
    9. 7.9  浮点表达式分析
    10. 7.10 系统初始化
      1. 7.10.1 用于系统预初始化的引导挂钩函数
      2. 7.10.2 运行时栈
      3. 7.10.3 COFF 变量的自动初始化
        1. 7.10.3.1 初始化表
        2.       291
        3. 7.10.3.2 在 COFF 运行时自动初始化变量
        4. 7.10.3.3 加载时初始化 COFF 格式的变量
        5. 7.10.3.4 全局构造函数
      4. 7.10.4 EABI 变量的自动初始化
        1. 7.10.4.1 零初始化变量
        2. 7.10.4.2 EABI 的直接初始化
        3. 7.10.4.3 EABI 运行时变量自动初始化
        4. 7.10.4.4 EABI 的自动初始化表
          1. 7.10.4.4.1 数据格式遵循的长度
          2. 7.10.4.4.2 零初始化格式
          3. 7.10.4.4.3 行程编码 (RLE) 格式
          4. 7.10.4.4.4 Lempel-Ziv-Storer-Szymanski 压缩 (LZSS) 格式
        5. 7.10.4.5 在加载时初始化变量
        6. 7.10.4.6 全局构造函数
  10. 使用运行时支持函数并构建库
    1. 8.1 C 和 C++ 运行时支持库
      1. 8.1.1 将代码与对象库链接
      2. 8.1.2 头文件
      3. 8.1.3 修改库函数
      4. 8.1.4 支持字符串处理
      5. 8.1.5 极少支持国际化
      6. 8.1.6 时间和时钟函数支持
      7. 8.1.7 允许打开的文件数量
      8. 8.1.8 库命名规则
    2. 8.2 C I/O 函数
      1. 8.2.1 高级别 I/O 函数
        1. 8.2.1.1 格式化和格式转换缓冲区
      2. 8.2.2 低级 I/O 实现概述
        1.       open
        2.       close
        3.       read
        4.       write
        5.       lseek
        6.       unlink
        7.       rename
      3. 8.2.3 器件驱动程序级别 I/O 函数
        1.       DEV_open
        2.       DEV_close
        3.       DEV_read
        4.       DEV_write
        5.       DEV_lseek
        6.       DEV_unlink
        7.       DEV_rename
      4. 8.2.4 为 C I/O 添加用户定义的器件驱动程序
        1. 8.2.4.1 将默认流映射到器件
      5. 8.2.5 器件前缀
        1.       add_device
        2.       339
        3. 8.2.5.1 为 C I/O 器件编程
    3. 8.3 处理可重入性(_register_lock() 和 _register_unlock() 函数)
    4. 8.4 在热启动期间重新初始化变量
    5. 8.5 库构建流程
      1. 8.5.1 所需的非德州仪器 (TI) 软件
      2. 8.5.2 使用库构建流程
        1. 8.5.2.1 通过链接器自动重建标准库
        2. 8.5.2.2 手动调用 mklib
          1. 8.5.2.2.1 构建标准库
          2. 8.5.2.2.2 共享或只读库目录
          3. 8.5.2.2.3 使用自定义选项构建库
          4. 8.5.2.2.4 mklib 程序选项摘要
      3. 8.5.3 扩展 mklib
        1. 8.5.3.1 底层机制
        2. 8.5.3.2 来自其他供应商的库
  11. C++ 名称还原器
    1. 9.1 调用 C++ 名称还原器
    2. 9.2 C++ 名称还原器的示例用法
  12. 10CLA 编译器
    1. 10.1 如何调用 CLA 编译器
      1. 10.1.1 CLA 特定的选项
    2. 10.2 CLA C 语言实现
      1. 10.2.1 变量和数据类型
      2. 10.2.2 Pragma、关键字和内在函数
      3. 10.2.3 使用 CLA 编译器进行优化
      4. 10.2.4 C 语言限制
      5. 10.2.5 存储器模型 - 相应的段
      6. 10.2.6 函数结构和调用惯例
  13.   A 术语表
    1.     369
  14.   B 修订历史记录
  15.   B 早期修订版本

运行时模型选项

这些选项专用于 TMS320C28x 工具集。有关更多信息,请参阅参考的章节。节 2.3.11中列出了 TMS320C28x 专用汇编器选项。

C28x 编译器同时支持 COFF ABI 和嵌入式应用程序二进制接口 (EABI) ABI。EABI 使用 ELF 目标文件格式和 DWARF 调试格式。

--abi={eabi|coffabi} 指定应用程序二进制接口 (ABI)。默认的 ABI 为 COFF。还支持 EABI。请参阅节 2.13请参阅《C28x 嵌入式应用程序二进制接口应用报告》(SPRAC71)。

EABI 应用程序中的所有代码都必须为EABI 构建。在将现有的 COFF ABI 系统迁移到 EABI 之前,请确保所有库都在 EABI 模式下可用。

--cla_support={cla0|cla1|cla2} 指定 TMS320C28x 控制律加速器 (CLA) 支持 类型 0、类型 1 或类型 2 。此选项用于编译或汇编为CLA 编写的代码。此选项在链接时不需要任何特殊的库支持;支持/不支持FPU的C28x所使用的库应该足够了。
--float_support={ fpu32 | fpu64 | softlib } 指定使用 TMS320C28x 32 位或 64 位硬件浮点支持。使用 --float_support=fpu32 指定具有 32 位硬件浮点支持的 C28x 架构。使用 --float_support=fpu64 指定具有 64 位硬件浮点支持的 C28x 架构。仅当使用 EABI 时才支持 FPU64。
如果使用 --tmu_support 选项来支持三角函数加速器,则 --float_support 选项会自动设置为 fpu32。默认值为 softlib,它会在没有特殊硬件支持的情况下执行浮点计算。
--idiv_support={ none | idiv0 } 使用硬件扩展来支持快速整数除法,以提供一组加速整数除法的指令。如果此硬件可用,请使用 --idiv_support=idiv0 来使用这些指令。默认为 none。包含此硬件的器件的数据表中含有“支持快速整数除法 (FINTDIV)”字样。(仅限 EABI。)

启用此选项后,内置整数除法和模运算符(“/”和“%”)使用适当的速度更快的指令。有关此类情况的更多信息,请参阅节 7.8.2

启用此选项后,还可以使用节 7.6.4中介绍的快速整数除法内在函数。为了使用这些内在函数,代码必须包含 stdlib.h 头文件。

--no_rpt 阻止编译器生成重复 (RPT) 指令。默认情况下,会为某些 memcpy、除法和乘法累加运算生成重复指令。但是,重复指令是不可中断的。
--pending_instantiations=# 指定在任何给定时间内可能正在进行的模板实例化的数量。使用 0 指定一个不受限制的数字。
--protect_volatile=num 启用易失性引用保护。已声明为易失性的非局部变量之间可能会发生流水线冲突。当写入一个易失性变量,然后读取另一个 易失性变量时,可能会发生冲突。--protect_volatile 选项允许在两个易失性引用之间至少放置 num 条指令,以确保写入操作发生在读取操作之前。num 为可选。如果未指定 num,则默认值为 2。例如,如果使用了 --protect_volatile=4,则易失性写入和易失性读取至少受到 4 条指令的保护。

外设流水线保护硬件保护所有内部外设和 XINTF 区域 1。如果将外设连接到 Xintf 区域 0、2、6、7,则可能需要使用 --protect_volatile 选项。内存不需要硬件保护或使用此选项。

--ramfunc={on|off} 如果设置为 on,则指定所有函数都应放置在位于 RAM 中的 .TI.ramfunc 段中。如果设置为 off,则只有具有 ramfunc 函数属性的函数才会以此种方式被处理。请参阅节 6.15.2
较新的 TI 链接器命令文件通过在 .TI.ramfunc 段中放置函数来自动支持 --ramfunc 选项。如果链接器命令文件不包含 .TI.ramfunc 段的段规格,则可以修改链接器命令文件以将此段放在 RAM 中。有关段放置位置的详细信息,请参阅《TMS320C28x 汇编语言工具用户指南》。
--rpt_threshold=k 生成迭代 k 次或次数更少的 RPT 循环(k 是0 和 256 之间的常数)。如果迭代次数大于 k 并且代码大小没有增加太多,则可以为同一个循环生成多个 RPT。在优化代码大小时使用此选项禁止为迭代次数可能大于k的循环生成RPT 循环。
请注意,通过带有寄存器操作数的 RPT,内联的 memcpy 调用现在支持超过 255 个字。因此,可支持内联最多 65535 个字的 memcpy。如果设置 --no_rpt 或 --rpt_threshold 选项,则分别禁用或减少此类内联。可使用 --rpt_threshold 指定的最大值仍然是 256。
--silicon_errata_fpu1_
workaround=on|off
启用此选项可防止在某些指令期间可能发生的 FPU 寄存器写入冲突。在 FRACF32、F32TOUI32 或 UI16TOF32 指令期间不能发生 CPU 到 FPU 寄存器写入。如果启用此选项,编译器会在这些指令之前增加五条 NOP 指令以防止冲突。
如果启用了以下任一选项,则默认情况下会禁用此选项:--float_support=fpu64、--tmu_support 或 --vcu_support=vcu2|vcrc。
--silicon_version=28 为 TMS320C28x 架构生成代码。唯一接受的值是 28。这是默认值,因此命令行上不再需要此选项。
--unified_memory 如果内存映射配置为单个统一空间,则使用 --unified_memory (-mt) 选项;此选项允许编译器为大多数 memcpy 调用和结构赋值生成 RPT PREAD 指令。这也使得 MAC 指令得以生成。--unified_memory 选项还允许使用更高效的数据内存指令来访问切换表。即使使用统一的内存,一些外设的内存以及与这些外设关联的 RAM 也只在数据内存中分配。
如果启用了 –unified_memory,可以通过将符号声明为易失性来阻止程序内存地址访问特定的符号。易失性和非易失性符号之间的结构体赋值会对所使用的指令产生不同的影响,具体取决于赋值的方向。从非易失性到易失性的结构体赋值可以将 RPT 与 PREAD 搭配使用,其中 PREAD 使用程序总线读取非易失性源操作数。从易失性分配到非易失性的结构体赋值可以将 RPT 与 PWRITE 搭配使用,其中 PWRITE 使用程序总线写入非易失性目标操作数。
--tmu_support[=tmu0|tmu1] 支持三角数学单元 (TMU) 。使用此选项会自动启用 FPU32 支持(与 --float_support=fpu32 选项一样)。当启用 TMU 支持时,可使用内在函数在 TMU 上执行三角函数指令。
TMU 硬件指令和库例程之间存在算法差异,因此运算结果可能略有不同。
tmu1 设置仅适用于 EABI。除了 tmu0 设置支持的内在函数之外,tmu1 设置还增加了对 LOG2F32 和 IEXP2F32 内在函数的支持。
在宽松浮点模式下,RTS 库调用被替换为相应的TMU 硬件指令,用于以下浮点运算:浮点除法、sqrt、sin、cos、atan 和 atan2。此外,如果 --tmu_support=tmu1 选项与 --fp_mode=relaxed 结合使用,则使用下述 32 位浮点数学函数的特殊版本:exp2f()、expf()、log2f()、logf() 和 powf()。未提供适用于 EABI 64 位 double 类型的宽松版本。
--vcu_support[=vcu0|vcu2|vcrc] vcu0 和 vcu2 设置指定支持 Viterbi、复数数学和 CRC 单元 (VCU) 的类型 0 或类型 2。请注意,没有 VCU 类型 1。默认值为 vcu0。
vcrc 设置指定仅支持循环冗余校验 (CRC) 算法。仅当使用 FPU32 或 FPU64 时,才支持 vcrc 。
仅当源代码是为 VCU 编写的汇编代码时,此选项才有用。对于 C/C++ 代码,此选项被忽略。此选项在链接时不需要任何特殊的库支持;支持/不支持VCU的C28x所使用的库应该足够了。同样,请注意,没有 VCU 类型 1。