ZHCSPX8B january   2000  – june 2023 XTR115 , XTR116

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Recommended Operating Conditions
    3. 6.3 Thermal Information
    4. 6.4 Electrical Characteristics
    5. 6.5 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Reverse-Voltage Protection
      2. 7.3.2 Overvoltage Surge Protection
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 External Transistor
      2. 8.1.2 Minimum Scale Current
      3. 8.1.3 Offsetting the Input
      4. 8.1.4 Maximum Output Current
      5. 8.1.5 Radio Frequency Interference
      6. 8.1.6 Circuit Stability
  10. Device and Documentation Support
    1. 9.1 Device Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 Trademarks
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Application Information

The XTR115 and XTR116 are identical devices except for the reference voltage output, pin 1. This voltage is available for external circuitry and is not used internally. Further discussions that apply to both devices refer to the XTR11x.

Figure 8-1 shows basic circuit connections with representative simplified input circuitry. The XTR11x is a two-wire current transmitter. The device input signal (pin 2) controls the output current. A portion of this current flows into the V+ power supply, pin 7. The remaining current flows in Q1. External input circuitry connected to the XTR11x can be powered from VREG or VREF. Current drawn from these terminals must be returned to IRET, pin 3. This IRET pin is a local ground for input circuitry driving the XTR11x.

GUID-20220329-SS0I-9VZC-8RLP-VZN26SFQVHT8-low.svg
(1) Also see Figure 8-4.
(2) See XTR11x 4-20 mA Current-Loop Transmitters XTR11x 4-20mA 电流环路变送器 XTR11x 4-20mA 电流环路变送器 特性 特性 应用 应用 说明 说明 Table of Contents Table of Contents Revision History Revision History Pin Configuration and Functions Pin Configuration and Functions Specifications Specifications Absolute Maximum Ratings Absolute Maximum Ratings Recommended Operating Conditions Recommended Operating Conditions Thermal Information Thermal Information Electrical Characteristics Electrical Characteristics Typical Characteristics Typical Characteristics Detailed Description Detailed Description Overview Overview Functional Block Diagram Functional Block Diagram Feature Description Feature Description Reverse-Voltage Protection Reverse-Voltage Protection Overvoltage Surge Protection Overvoltage Surge Protection Application and Implementation Application and Implementation Application Information Application Information External Transistor External Transistor Minimum Scale Current Minimum Scale Current Offsetting the Input Offsetting the Input Maximum Output Current Maximum Output Current Radio Frequency Interference Radio Frequency Interference Circuit Stability Circuit Stability Device and Documentation Support Device and Documentation Support Device Support Device Support Documentation Support Documentation Support Related Documentation Related Documentation 接收文档更新通知 接收文档更新通知 支持资源 支持资源 Trademarks Trademarks 静电放电警告 静电放电警告 术语表 术语表 Mechanical, Packaging, and Orderable Information Mechanical, Packaging, and Orderable Information 重要声明和免责声明 重要声明和免责声明 XTR11x 4-20mA 电流环路变送器 XTR11x 4-20mA 电流环路变送器 特性 B 更新了整个文档中的表格、图和交叉参考的编号格式 yes B 添加了引脚功能、ESD 等级、热性能信息、建议运行条件 和电气特性 表以及详细说明、概述、功能方框图、特性说明、应用和实施、器件和文档支持 和机械、封装和可订购信息 部分 yes 低静态电流:200μA 用于外部电路的 5V 稳压器 用于传感器激励的 VREF: XTR115:2.5V XTR116:4.096V 低量程误差:0.05% 低非线性误差:0.003% 宽环路电源电压范围:7.5 V 至 36 V SO-8 封装 特性 B 更新了整个文档中的表格、图和交叉参考的编号格式 yes B 添加了引脚功能、ESD 等级、热性能信息、建议运行条件 和电气特性 表以及详细说明、概述、功能方框图、特性说明、应用和实施、器件和文档支持 和机械、封装和可订购信息 部分 yes B 更新了整个文档中的表格、图和交叉参考的编号格式 yes B 添加了引脚功能、ESD 等级、热性能信息、建议运行条件 和电气特性 表以及详细说明、概述、功能方框图、特性说明、应用和实施、器件和文档支持 和机械、封装和可订购信息 部分 yes B 更新了整个文档中的表格、图和交叉参考的编号格式 yes B更新了整个文档中的表格、图和交叉参考的编号格式yes B 添加了引脚功能、ESD 等级、热性能信息、建议运行条件 和电气特性 表以及详细说明、概述、功能方框图、特性说明、应用和实施、器件和文档支持 和机械、封装和可订购信息 部分 yes B添加了引脚功能、ESD 等级、热性能信息、建议运行条件 和电气特性 表以及详细说明、概述、功能方框图、特性说明、应用和实施、器件和文档支持 和机械、封装和可订购信息 部分引脚功能ESD 等级热性能信息建议运行条件电气特性详细说明概述功能方框图特性说明应用和实施器件和文档支持机械、封装和可订购信息yes 低静态电流:200μA 用于外部电路的 5V 稳压器 用于传感器激励的 VREF: XTR115:2.5V XTR116:4.096V 低量程误差:0.05% 低非线性误差:0.003% 宽环路电源电压范围:7.5 V 至 36 V SO-8 封装 低静态电流:200μA 用于外部电路的 5V 稳压器 用于传感器激励的 VREF: XTR115:2.5V XTR116:4.096V 低量程误差:0.05% 低非线性误差:0.003% 宽环路电源电压范围:7.5 V 至 36 V SO-8 封装 低静态电流:200μA 用于外部电路的 5V 稳压器 用于传感器激励的 VREF: XTR115:2.5V XTR116:4.096V 低量程误差:0.05% 低非线性误差:0.003% 宽环路电源电压范围:7.5 V 至 36 V SO-8 封装 低静态电流:200μA用于外部电路的 5V 稳压器用于传感器激励的 VREF: XTR115:2.5V XTR116:4.096V REF XTR115:2.5V XTR116:4.096V XTR115:2.5VXTR116:4.096V低量程误差:0.05%低非线性误差:0.003%宽环路电源电压范围:7.5 V 至 36 VSO-8 封装 应用 2 线 4-20mA 电流环路 发送器 智能变送器 工业过程控制 测试系统 与 HART 调制解调器兼容 电流放大器 电压转电流放大器 应用 2 线 4-20mA 电流环路 发送器 智能变送器 工业过程控制 测试系统 与 HART 调制解调器兼容 电流放大器 电压转电流放大器 2 线 4-20mA 电流环路 发送器 智能变送器 工业过程控制 测试系统 与 HART 调制解调器兼容 电流放大器 电压转电流放大器 2 线 4-20mA 电流环路 发送器 智能变送器 工业过程控制 测试系统 与 HART 调制解调器兼容 电流放大器 电压转电流放大器 2 线 4-20mA 电流环路发送器智能变送器工业过程控制测试系统与 HART 调制解调器兼容电流放大器电压转电流放大器 说明 XTR115 和 XTR116 (XTR11x) 是精密电流输出转换器,设计用于通过业界通用电流环路传输模拟 4mA 至 20mA 信号。这些器件提供精确的电流调节和输出电流限制功能。 片上稳压器 (5V) 可用于为外部电路供电。精密片上 VREF(XTR115 为 2.5V,XTR116 为 4.096V)可用于激励传感器或使其偏移。电流回路引脚 (IRET) 可检测外部电路中使用的任何电流,以精确控制输出电流。 XTR11x 是使用 4mA 至 20mA 电流传输的智能传感器的基本构建块。 XTR11x 的工业级工作温度范围为 –40°C 至 +85°C。 器件信息 器件型号 片上 VREF 封装#GUID-1F31B8BE-BE97-4F61-A3A1-484C53C1BFD9/GUID-3653871F-5AF1-4A52-A35A-0F101150B230 XTR115 2.5V D(SOIC,8) XTR116 4.096V 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。   典型应用 说明 XTR115 和 XTR116 (XTR11x) 是精密电流输出转换器,设计用于通过业界通用电流环路传输模拟 4mA 至 20mA 信号。这些器件提供精确的电流调节和输出电流限制功能。 片上稳压器 (5V) 可用于为外部电路供电。精密片上 VREF(XTR115 为 2.5V,XTR116 为 4.096V)可用于激励传感器或使其偏移。电流回路引脚 (IRET) 可检测外部电路中使用的任何电流,以精确控制输出电流。 XTR11x 是使用 4mA 至 20mA 电流传输的智能传感器的基本构建块。 XTR11x 的工业级工作温度范围为 –40°C 至 +85°C。 器件信息 器件型号 片上 VREF 封装#GUID-1F31B8BE-BE97-4F61-A3A1-484C53C1BFD9/GUID-3653871F-5AF1-4A52-A35A-0F101150B230 XTR115 2.5V D(SOIC,8) XTR116 4.096V 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。   典型应用 XTR115 和 XTR116 (XTR11x) 是精密电流输出转换器,设计用于通过业界通用电流环路传输模拟 4mA 至 20mA 信号。这些器件提供精确的电流调节和输出电流限制功能。 片上稳压器 (5V) 可用于为外部电路供电。精密片上 VREF(XTR115 为 2.5V,XTR116 为 4.096V)可用于激励传感器或使其偏移。电流回路引脚 (IRET) 可检测外部电路中使用的任何电流,以精确控制输出电流。 XTR11x 是使用 4mA 至 20mA 电流传输的智能传感器的基本构建块。 XTR11x 的工业级工作温度范围为 –40°C 至 +85°C。 器件信息 器件型号 片上 VREF 封装#GUID-1F31B8BE-BE97-4F61-A3A1-484C53C1BFD9/GUID-3653871F-5AF1-4A52-A35A-0F101150B230 XTR115 2.5V D(SOIC,8) XTR116 4.096V 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。   典型应用 XTR115 和 XTR116 (XTR11x) 是精密电流输出转换器,设计用于通过业界通用电流环路传输模拟 4mA 至 20mA 信号。这些器件提供精确的电流调节和输出电流限制功能。片上稳压器 (5V) 可用于为外部电路供电。精密片上 VREF(XTR115 为 2.5V,XTR116 为 4.096V)可用于激励传感器或使其偏移。电流回路引脚 (IRET) 可检测外部电路中使用的任何电流,以精确控制输出电流。REFRETXTR11x 是使用 4mA 至 20mA 电流传输的智能传感器的基本构建块。XTR11x 的工业级工作温度范围为 –40°C 至 +85°C。 器件信息 器件型号 片上 VREF 封装#GUID-1F31B8BE-BE97-4F61-A3A1-484C53C1BFD9/GUID-3653871F-5AF1-4A52-A35A-0F101150B230 XTR115 2.5V D(SOIC,8) XTR116 4.096V 器件信息 器件型号 片上 VREF 封装#GUID-1F31B8BE-BE97-4F61-A3A1-484C53C1BFD9/GUID-3653871F-5AF1-4A52-A35A-0F101150B230 XTR115 2.5V D(SOIC,8) XTR116 4.096V 器件型号 片上 VREF 封装#GUID-1F31B8BE-BE97-4F61-A3A1-484C53C1BFD9/GUID-3653871F-5AF1-4A52-A35A-0F101150B230 器件型号 片上 VREF 封装#GUID-1F31B8BE-BE97-4F61-A3A1-484C53C1BFD9/GUID-3653871F-5AF1-4A52-A35A-0F101150B230 器件型号片上 VREF REF封装#GUID-1F31B8BE-BE97-4F61-A3A1-484C53C1BFD9/GUID-3653871F-5AF1-4A52-A35A-0F101150B230 #GUID-1F31B8BE-BE97-4F61-A3A1-484C53C1BFD9/GUID-3653871F-5AF1-4A52-A35A-0F101150B230 XTR115 2.5V D(SOIC,8) XTR116 4.096V XTR115 2.5V D(SOIC,8) XTR1152.5VD(SOIC,8) XTR116 4.096V XTR1164.096V 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。  典型应用 典型应用 典型应用 Table of Contents yes 2 Table of Contents yes 2 yes 2 yes2 Revision History yes November 2003 March 2022 A B Revision History yes November 2003 March 2022 A B yes November 2003 March 2022 A B yesNovember 2003March 2022AB Pin Configuration and Functions B Added Pin Functions table yes D Package, SOIC-8 (Top View) Pin Functions PIN TYPE DESCRIPTION NO. NAME 1 VREF Output Reference voltage output (2.5 V for XTR115, 4.096 V for XTR116) 2 IIN Input Current input pin 3 IRET Input Local ground return pin for VREG and VREF 4 IO Output Regulated 4-mA to 20-mA current-loop output 5 E (Emitter) Input Emitter connection for external transistor 6 B (Base) Output Base connection for external transistor 7 V+ Power Loop power supply 8 VREG Output 5-V regulator voltage output Pin Configuration and Functions B Added Pin Functions table yes B Added Pin Functions table yes B Added Pin Functions table yes BAdded Pin Functions tablePin Functionsyes D Package, SOIC-8 (Top View) Pin Functions PIN TYPE DESCRIPTION NO. NAME 1 VREF Output Reference voltage output (2.5 V for XTR115, 4.096 V for XTR116) 2 IIN Input Current input pin 3 IRET Input Local ground return pin for VREG and VREF 4 IO Output Regulated 4-mA to 20-mA current-loop output 5 E (Emitter) Input Emitter connection for external transistor 6 B (Base) Output Base connection for external transistor 7 V+ Power Loop power supply 8 VREG Output 5-V regulator voltage output D Package, SOIC-8 (Top View) Pin Functions PIN TYPE DESCRIPTION NO. NAME 1 VREF Output Reference voltage output (2.5 V for XTR115, 4.096 V for XTR116) 2 IIN Input Current input pin 3 IRET Input Local ground return pin for VREG and VREF 4 IO Output Regulated 4-mA to 20-mA current-loop output 5 E (Emitter) Input Emitter connection for external transistor 6 B (Base) Output Base connection for external transistor 7 V+ Power Loop power supply 8 VREG Output 5-V regulator voltage output D Package, SOIC-8 (Top View) D Package, SOIC-8 (Top View) Pin Functions PIN TYPE DESCRIPTION NO. NAME 1 VREF Output Reference voltage output (2.5 V for XTR115, 4.096 V for XTR116) 2 IIN Input Current input pin 3 IRET Input Local ground return pin for VREG and VREF 4 IO Output Regulated 4-mA to 20-mA current-loop output 5 E (Emitter) Input Emitter connection for external transistor 6 B (Base) Output Base connection for external transistor 7 V+ Power Loop power supply 8 VREG Output 5-V regulator voltage output Pin Functions PIN TYPE DESCRIPTION NO. NAME 1 VREF Output Reference voltage output (2.5 V for XTR115, 4.096 V for XTR116) 2 IIN Input Current input pin 3 IRET Input Local ground return pin for VREG and VREF 4 IO Output Regulated 4-mA to 20-mA current-loop output 5 E (Emitter) Input Emitter connection for external transistor 6 B (Base) Output Base connection for external transistor 7 V+ Power Loop power supply 8 VREG Output 5-V regulator voltage output PIN TYPE DESCRIPTION NO. NAME PIN TYPE DESCRIPTION PINTYPEDESCRIPTION NO. NAME NO.NAME 1 VREF Output Reference voltage output (2.5 V for XTR115, 4.096 V for XTR116) 2 IIN Input Current input pin 3 IRET Input Local ground return pin for VREG and VREF 4 IO Output Regulated 4-mA to 20-mA current-loop output 5 E (Emitter) Input Emitter connection for external transistor 6 B (Base) Output Base connection for external transistor 7 V+ Power Loop power supply 8 VREG Output 5-V regulator voltage output 1 VREF Output Reference voltage output (2.5 V for XTR115, 4.096 V for XTR116) 1VREF REFOutputReference voltage output (2.5 V for XTR115, 4.096 V for XTR116) 2 IIN Input Current input pin 2IIN INInputCurrent input pin 3 IRET Input Local ground return pin for VREG and VREF 3IRET RETInputLocal ground return pin for VREG and VREF REGREF 4 IO Output Regulated 4-mA to 20-mA current-loop output 4IO OOutputRegulated 4-mA to 20-mA current-loop output 5 E (Emitter) Input Emitter connection for external transistor 5E (Emitter)InputEmitter connection for external transistor 6 B (Base) Output Base connection for external transistor 6B (Base)OutputBase connection for external transistor 7 V+ Power Loop power supply 7V+PowerLoop power supply 8 VREG Output 5-V regulator voltage output 8VREG REGOutput5-V regulator voltage output Specifications Absolute Maximum Ratings B Changed operating temperature minimum value from –55°C to –40°C in Absolute Maximum Ratings yes over operating free-air temperature range (unless otherwise noted)#GUID-BA93A42F-E3E6-463A-9583-31F97B9AE763/GUID-CA5F2606-82C8-4879-98CD-C1303F0ED62A MIN MAX UNIT V+ Power supply (referenced to IO pin) 40 V Input voltage (referenced to IRET pin) 0 V+ V Output current limit Continuous VREG, short-circuit Continuous VREF, short-circuit Continuous TA Operating temperature –40 125 °C TJ Junction temperature 165 °C Tstg Storage temperature –55 125 °C Lead temperature (soldering, 10 s) 300 °C Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM MAX UNIT V+ Power supply voltage 7.5 24 36 V TA Specified temperature –40 85 °C Thermal Information B Deleted thermal resistance, θJA specification of 150 °C/W from Electrical Characteristics; added a Thermal Information table, with RθJA = 128.2 °C/W and other detailed thermal parameters. yes THERMAL METRIC#GUID-F7C9346D-8ACE-44F5-8BEC-AF549F423E23/GUID-B108DCD2-DB77-4551-8855-CA5D6C9D73D4 XTR11x UNIT D (SOIC) 8 PINS RθJA Junction-to-ambient thermal resistance 128.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 68.2 °C/W RθJB Junction-to-board thermal resistance 75.7 °C/W ψJT Junction-to-top characterization parameter 15.5 °C/W ψJB Junction-to-board characterization parameter 74.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report. Electrical Characteristics B Changed span error test condition from: IIN = 250 µA to 25 mA to: IOUT = 250 µA to 25 mA in Electrical Characteristics yes B Changed VREF voltage accuracy vs load typical value from ±100 ppm/mA to ±200 ppm/mA in Electrical Characteristics yes B Changed bias current vs temperature typical value from 150 pA/°C to 300 pA/°C in Electrical Characteristics yes at TA = 25°C, V+ = 24 V, RIN = 20 kΩ, and TIP29C external transistor (unless otherwise noted) PARAMETER TEST CONDITIONS XTR115U, XTR116U XTR115UA, XTR116UA UNIT MIN TYP MAX MIN TYP MAX OUTPUT IO Output current equation IO = IIN × 100 IO = IIN × 100 Output current, linear range 0.25 25 0.25 25 mA ILIM Overscale limit 32 32 mA IMIN Underscale limit IREG = 0, IREF = 0 0.2 0.25 0.2 0.25 mA SPAN S Span (current gain) 100 100 A/A Error#GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-FB4C44A3-5DD9-482E-8663-7111C66039AB IOUT = 250 mA to 25 mA ±0.05 ±0.2 ±0.05 ±0.4 % vs Temperature TA = –40°C to +85°C ±3 ±20 ±3 ±20 ppm/°C Nonlinearity IIN = 250 mA to 25 mA ±0.003 ±0.01 ±0.003 ±0.02 % INPUT VOS Offset voltage (op amp) IIN = 40 mA ±100 ±250 ±100 ±500 µV vs Temperature TA = –40°C to +85°C ±0.7 ±3 ±0.7 ±6 µV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±0.1 ±2 ±0.1 ±2 µV/V IB Bias current –35 –35 nA vs Temperature 300 300 pA/°C en Noise: 0.1 Hz to 10 Hz 0.6 0.6 µVp-p DYNAMIC RESPONSE Small signal bandwidth CLOOP = 0, RL = 0 380 380 kHz Slew rate 3.2 3.2 mA/µs VREF #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 XTR115 2.5 2.5 V XTR116 4.096 4.096 V Voltage accuracy IREF = 0 ±0.05 ±0.25 ±0.05 ±0.5 % vs Temperature TA = –40°C to +85°C ±20 ±35 ±20 ±75 ppm/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±1 ±10 ±1 ±10 ppm/V vs Load IREF = 0 mA to 2.5 mA ±200 ±200 ppm/mA Noise 0.1 Hz to 10 Hz 10 10 µVp-p Short-circuit current 16 16 mA VREG #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 Voltage 5 5 V Voltage accuracy IREG = 0 ±0.05 ±0.1 ±0.05 ±0.1 V vs Temperature TA = –40°C to +85°C ±0.1 ±0.1 mV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V 1 1 mV/V vs Output current See Typical Characteristics See Typical Characteristics Short-circuit current 12 12 mA POWER SUPPLY, V+ Quiescent current 200 250 200 250 µA TA = –40°C to +85°C 240 300 240 300 µA Does not include initial error or TCR of RIN. Voltage measured with respect to IRET pin. Typical Characteristics At TA = 25°C, V+ = 24 V, RIN = 20 kΩ, and TIP29C external transistor (unless otherwise noted) Current Gain vs Frequency   Quiescent Current vs Temperature   Reference Voltage vs Temperature   Overscale Current vs Temperature   VREG Voltage vs VREG Current   Specifications Absolute Maximum Ratings B Changed operating temperature minimum value from –55°C to –40°C in Absolute Maximum Ratings yes over operating free-air temperature range (unless otherwise noted)#GUID-BA93A42F-E3E6-463A-9583-31F97B9AE763/GUID-CA5F2606-82C8-4879-98CD-C1303F0ED62A MIN MAX UNIT V+ Power supply (referenced to IO pin) 40 V Input voltage (referenced to IRET pin) 0 V+ V Output current limit Continuous VREG, short-circuit Continuous VREF, short-circuit Continuous TA Operating temperature –40 125 °C TJ Junction temperature 165 °C Tstg Storage temperature –55 125 °C Lead temperature (soldering, 10 s) 300 °C Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. Absolute Maximum Ratings B Changed operating temperature minimum value from –55°C to –40°C in Absolute Maximum Ratings yes B Changed operating temperature minimum value from –55°C to –40°C in Absolute Maximum Ratings yes B Changed operating temperature minimum value from –55°C to –40°C in Absolute Maximum Ratings yes BChanged operating temperature minimum value from –55°C to –40°C in Absolute Maximum Ratings Absolute Maximum Ratingsyes over operating free-air temperature range (unless otherwise noted)#GUID-BA93A42F-E3E6-463A-9583-31F97B9AE763/GUID-CA5F2606-82C8-4879-98CD-C1303F0ED62A MIN MAX UNIT V+ Power supply (referenced to IO pin) 40 V Input voltage (referenced to IRET pin) 0 V+ V Output current limit Continuous VREG, short-circuit Continuous VREF, short-circuit Continuous TA Operating temperature –40 125 °C TJ Junction temperature 165 °C Tstg Storage temperature –55 125 °C Lead temperature (soldering, 10 s) 300 °C Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. over operating free-air temperature range (unless otherwise noted)#GUID-BA93A42F-E3E6-463A-9583-31F97B9AE763/GUID-CA5F2606-82C8-4879-98CD-C1303F0ED62A MIN MAX UNIT V+ Power supply (referenced to IO pin) 40 V Input voltage (referenced to IRET pin) 0 V+ V Output current limit Continuous VREG, short-circuit Continuous VREF, short-circuit Continuous TA Operating temperature –40 125 °C TJ Junction temperature 165 °C Tstg Storage temperature –55 125 °C Lead temperature (soldering, 10 s) 300 °C Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. over operating free-air temperature range (unless otherwise noted)#GUID-BA93A42F-E3E6-463A-9583-31F97B9AE763/GUID-CA5F2606-82C8-4879-98CD-C1303F0ED62A MIN MAX UNIT V+ Power supply (referenced to IO pin) 40 V Input voltage (referenced to IRET pin) 0 V+ V Output current limit Continuous VREG, short-circuit Continuous VREF, short-circuit Continuous TA Operating temperature –40 125 °C TJ Junction temperature 165 °C Tstg Storage temperature –55 125 °C Lead temperature (soldering, 10 s) 300 °C over operating free-air temperature range (unless otherwise noted)#GUID-BA93A42F-E3E6-463A-9583-31F97B9AE763/GUID-CA5F2606-82C8-4879-98CD-C1303F0ED62A #GUID-BA93A42F-E3E6-463A-9583-31F97B9AE763/GUID-CA5F2606-82C8-4879-98CD-C1303F0ED62A MIN MAX UNIT V+ Power supply (referenced to IO pin) 40 V Input voltage (referenced to IRET pin) 0 V+ V Output current limit Continuous VREG, short-circuit Continuous VREF, short-circuit Continuous TA Operating temperature –40 125 °C TJ Junction temperature 165 °C Tstg Storage temperature –55 125 °C Lead temperature (soldering, 10 s) 300 °C MIN MAX UNIT MIN MAX UNIT MINMAXUNIT V+ Power supply (referenced to IO pin) 40 V Input voltage (referenced to IRET pin) 0 V+ V Output current limit Continuous VREG, short-circuit Continuous VREF, short-circuit Continuous TA Operating temperature –40 125 °C TJ Junction temperature 165 °C Tstg Storage temperature –55 125 °C Lead temperature (soldering, 10 s) 300 °C V+ Power supply (referenced to IO pin) 40 V V+Power supply (referenced to IO pin)O40V Input voltage (referenced to IRET pin) 0 V+ V Input voltage (referenced to IRET pin)RET0V+V Output current limit Continuous Output current limitContinuous VREG, short-circuit Continuous VREG, short-circuitREGContinuous VREF, short-circuit Continuous VREF, short-circuitREFContinuous TA Operating temperature –40 125 °C TA AOperating temperature–40125°C TJ Junction temperature 165 °C TJ JJunction temperature165°C Tstg Storage temperature –55 125 °C Tstg stgStorage temperature–55125°C Lead temperature (soldering, 10 s) 300 °C Lead temperature (soldering, 10 s)300°C Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM MAX UNIT V+ Power supply voltage 7.5 24 36 V TA Specified temperature –40 85 °C Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM MAX UNIT V+ Power supply voltage 7.5 24 36 V TA Specified temperature –40 85 °C over operating free-air temperature range (unless otherwise noted) MIN NOM MAX UNIT V+ Power supply voltage 7.5 24 36 V TA Specified temperature –40 85 °C over operating free-air temperature range (unless otherwise noted) MIN NOM MAX UNIT V+ Power supply voltage 7.5 24 36 V TA Specified temperature –40 85 °C over operating free-air temperature range (unless otherwise noted) MIN NOM MAX UNIT V+ Power supply voltage 7.5 24 36 V TA Specified temperature –40 85 °C MIN NOM MAX UNIT MIN NOM MAX UNIT MINNOMMAXUNIT V+ Power supply voltage 7.5 24 36 V TA Specified temperature –40 85 °C V+ Power supply voltage 7.5 24 36 V V+Power supply voltage7.52436V TA Specified temperature –40 85 °C TA ASpecified temperature –4085°C Thermal Information B Deleted thermal resistance, θJA specification of 150 °C/W from Electrical Characteristics; added a Thermal Information table, with RθJA = 128.2 °C/W and other detailed thermal parameters. yes THERMAL METRIC#GUID-F7C9346D-8ACE-44F5-8BEC-AF549F423E23/GUID-B108DCD2-DB77-4551-8855-CA5D6C9D73D4 XTR11x UNIT D (SOIC) 8 PINS RθJA Junction-to-ambient thermal resistance 128.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 68.2 °C/W RθJB Junction-to-board thermal resistance 75.7 °C/W ψJT Junction-to-top characterization parameter 15.5 °C/W ψJB Junction-to-board characterization parameter 74.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report. Thermal Information B Deleted thermal resistance, θJA specification of 150 °C/W from Electrical Characteristics; added a Thermal Information table, with RθJA = 128.2 °C/W and other detailed thermal parameters. yes B Deleted thermal resistance, θJA specification of 150 °C/W from Electrical Characteristics; added a Thermal Information table, with RθJA = 128.2 °C/W and other detailed thermal parameters. yes B Deleted thermal resistance, θJA specification of 150 °C/W from Electrical Characteristics; added a Thermal Information table, with RθJA = 128.2 °C/W and other detailed thermal parameters. yes BDeleted thermal resistance, θJA specification of 150 °C/W from Electrical Characteristics; added a Thermal Information table, with RθJA = 128.2 °C/W and other detailed thermal parameters.JAElectrical CharacteristicsThermal InformationθJAyes THERMAL METRIC#GUID-F7C9346D-8ACE-44F5-8BEC-AF549F423E23/GUID-B108DCD2-DB77-4551-8855-CA5D6C9D73D4 XTR11x UNIT D (SOIC) 8 PINS RθJA Junction-to-ambient thermal resistance 128.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 68.2 °C/W RθJB Junction-to-board thermal resistance 75.7 °C/W ψJT Junction-to-top characterization parameter 15.5 °C/W ψJB Junction-to-board characterization parameter 74.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report. THERMAL METRIC#GUID-F7C9346D-8ACE-44F5-8BEC-AF549F423E23/GUID-B108DCD2-DB77-4551-8855-CA5D6C9D73D4 XTR11x UNIT D (SOIC) 8 PINS RθJA Junction-to-ambient thermal resistance 128.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 68.2 °C/W RθJB Junction-to-board thermal resistance 75.7 °C/W ψJT Junction-to-top characterization parameter 15.5 °C/W ψJB Junction-to-board characterization parameter 74.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report. THERMAL METRIC#GUID-F7C9346D-8ACE-44F5-8BEC-AF549F423E23/GUID-B108DCD2-DB77-4551-8855-CA5D6C9D73D4 XTR11x UNIT D (SOIC) 8 PINS RθJA Junction-to-ambient thermal resistance 128.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 68.2 °C/W RθJB Junction-to-board thermal resistance 75.7 °C/W ψJT Junction-to-top characterization parameter 15.5 °C/W ψJB Junction-to-board characterization parameter 74.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W THERMAL METRIC#GUID-F7C9346D-8ACE-44F5-8BEC-AF549F423E23/GUID-B108DCD2-DB77-4551-8855-CA5D6C9D73D4 XTR11x UNIT D (SOIC) 8 PINS RθJA Junction-to-ambient thermal resistance 128.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 68.2 °C/W RθJB Junction-to-board thermal resistance 75.7 °C/W ψJT Junction-to-top characterization parameter 15.5 °C/W ψJB Junction-to-board characterization parameter 74.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W THERMAL METRIC#GUID-F7C9346D-8ACE-44F5-8BEC-AF549F423E23/GUID-B108DCD2-DB77-4551-8855-CA5D6C9D73D4 XTR11x UNIT D (SOIC) 8 PINS THERMAL METRIC#GUID-F7C9346D-8ACE-44F5-8BEC-AF549F423E23/GUID-B108DCD2-DB77-4551-8855-CA5D6C9D73D4 XTR11x UNIT THERMAL METRIC#GUID-F7C9346D-8ACE-44F5-8BEC-AF549F423E23/GUID-B108DCD2-DB77-4551-8855-CA5D6C9D73D4 #GUID-F7C9346D-8ACE-44F5-8BEC-AF549F423E23/GUID-B108DCD2-DB77-4551-8855-CA5D6C9D73D4XTR11xUNIT D (SOIC) D (SOIC) 8 PINS 8 PINS RθJA Junction-to-ambient thermal resistance 128.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 68.2 °C/W RθJB Junction-to-board thermal resistance 75.7 °C/W ψJT Junction-to-top characterization parameter 15.5 °C/W ψJB Junction-to-board characterization parameter 74.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W RθJA Junction-to-ambient thermal resistance 128.2 °C/W RθJA θJAJunction-to-ambient thermal resistance 128.2°C/W RθJC(top) Junction-to-case (top) thermal resistance 68.2 °C/W RθJC(top) θJC(top)Junction-to-case (top) thermal resistance 68.2°C/W RθJB Junction-to-board thermal resistance 75.7 °C/W RθJB θJBJunction-to-board thermal resistance 75.7°C/W ψJT Junction-to-top characterization parameter 15.5 °C/W ψJT JTJunction-to-top characterization parameter 15.5°C/W ψJB Junction-to-board characterization parameter 74.9 °C/W ψJB JBJunction-to-board characterization parameter74.9°C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W RθJC(bot) θJC(bot)Junction-to-case (bottom) thermal resistance N/A°C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report. For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report. Semiconductor and IC package thermal metrics Semiconductor and IC package thermal metrics Electrical Characteristics B Changed span error test condition from: IIN = 250 µA to 25 mA to: IOUT = 250 µA to 25 mA in Electrical Characteristics yes B Changed VREF voltage accuracy vs load typical value from ±100 ppm/mA to ±200 ppm/mA in Electrical Characteristics yes B Changed bias current vs temperature typical value from 150 pA/°C to 300 pA/°C in Electrical Characteristics yes at TA = 25°C, V+ = 24 V, RIN = 20 kΩ, and TIP29C external transistor (unless otherwise noted) PARAMETER TEST CONDITIONS XTR115U, XTR116U XTR115UA, XTR116UA UNIT MIN TYP MAX MIN TYP MAX OUTPUT IO Output current equation IO = IIN × 100 IO = IIN × 100 Output current, linear range 0.25 25 0.25 25 mA ILIM Overscale limit 32 32 mA IMIN Underscale limit IREG = 0, IREF = 0 0.2 0.25 0.2 0.25 mA SPAN S Span (current gain) 100 100 A/A Error#GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-FB4C44A3-5DD9-482E-8663-7111C66039AB IOUT = 250 mA to 25 mA ±0.05 ±0.2 ±0.05 ±0.4 % vs Temperature TA = –40°C to +85°C ±3 ±20 ±3 ±20 ppm/°C Nonlinearity IIN = 250 mA to 25 mA ±0.003 ±0.01 ±0.003 ±0.02 % INPUT VOS Offset voltage (op amp) IIN = 40 mA ±100 ±250 ±100 ±500 µV vs Temperature TA = –40°C to +85°C ±0.7 ±3 ±0.7 ±6 µV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±0.1 ±2 ±0.1 ±2 µV/V IB Bias current –35 –35 nA vs Temperature 300 300 pA/°C en Noise: 0.1 Hz to 10 Hz 0.6 0.6 µVp-p DYNAMIC RESPONSE Small signal bandwidth CLOOP = 0, RL = 0 380 380 kHz Slew rate 3.2 3.2 mA/µs VREF #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 XTR115 2.5 2.5 V XTR116 4.096 4.096 V Voltage accuracy IREF = 0 ±0.05 ±0.25 ±0.05 ±0.5 % vs Temperature TA = –40°C to +85°C ±20 ±35 ±20 ±75 ppm/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±1 ±10 ±1 ±10 ppm/V vs Load IREF = 0 mA to 2.5 mA ±200 ±200 ppm/mA Noise 0.1 Hz to 10 Hz 10 10 µVp-p Short-circuit current 16 16 mA VREG #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 Voltage 5 5 V Voltage accuracy IREG = 0 ±0.05 ±0.1 ±0.05 ±0.1 V vs Temperature TA = –40°C to +85°C ±0.1 ±0.1 mV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V 1 1 mV/V vs Output current See Typical Characteristics See Typical Characteristics Short-circuit current 12 12 mA POWER SUPPLY, V+ Quiescent current 200 250 200 250 µA TA = –40°C to +85°C 240 300 240 300 µA Does not include initial error or TCR of RIN. Voltage measured with respect to IRET pin. Electrical Characteristics B Changed span error test condition from: IIN = 250 µA to 25 mA to: IOUT = 250 µA to 25 mA in Electrical Characteristics yes B Changed VREF voltage accuracy vs load typical value from ±100 ppm/mA to ±200 ppm/mA in Electrical Characteristics yes B Changed bias current vs temperature typical value from 150 pA/°C to 300 pA/°C in Electrical Characteristics yes B Changed span error test condition from: IIN = 250 µA to 25 mA to: IOUT = 250 µA to 25 mA in Electrical Characteristics yes B Changed VREF voltage accuracy vs load typical value from ±100 ppm/mA to ±200 ppm/mA in Electrical Characteristics yes B Changed bias current vs temperature typical value from 150 pA/°C to 300 pA/°C in Electrical Characteristics yes B Changed span error test condition from: IIN = 250 µA to 25 mA to: IOUT = 250 µA to 25 mA in Electrical Characteristics yes BChanged span error test condition from: IIN = 250 µA to 25 mA to: IOUT = 250 µA to 25 mA in Electrical Characteristics INOUTElectrical Characteristicsyes B Changed VREF voltage accuracy vs load typical value from ±100 ppm/mA to ±200 ppm/mA in Electrical Characteristics yes BChanged VREF voltage accuracy vs load typical value from ±100 ppm/mA to ±200 ppm/mA in Electrical Characteristics REFElectrical Characteristicsyes B Changed bias current vs temperature typical value from 150 pA/°C to 300 pA/°C in Electrical Characteristics yes BChanged bias current vs temperature typical value from 150 pA/°C to 300 pA/°C in Electrical Characteristics Electrical Characteristicsyes at TA = 25°C, V+ = 24 V, RIN = 20 kΩ, and TIP29C external transistor (unless otherwise noted) PARAMETER TEST CONDITIONS XTR115U, XTR116U XTR115UA, XTR116UA UNIT MIN TYP MAX MIN TYP MAX OUTPUT IO Output current equation IO = IIN × 100 IO = IIN × 100 Output current, linear range 0.25 25 0.25 25 mA ILIM Overscale limit 32 32 mA IMIN Underscale limit IREG = 0, IREF = 0 0.2 0.25 0.2 0.25 mA SPAN S Span (current gain) 100 100 A/A Error#GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-FB4C44A3-5DD9-482E-8663-7111C66039AB IOUT = 250 mA to 25 mA ±0.05 ±0.2 ±0.05 ±0.4 % vs Temperature TA = –40°C to +85°C ±3 ±20 ±3 ±20 ppm/°C Nonlinearity IIN = 250 mA to 25 mA ±0.003 ±0.01 ±0.003 ±0.02 % INPUT VOS Offset voltage (op amp) IIN = 40 mA ±100 ±250 ±100 ±500 µV vs Temperature TA = –40°C to +85°C ±0.7 ±3 ±0.7 ±6 µV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±0.1 ±2 ±0.1 ±2 µV/V IB Bias current –35 –35 nA vs Temperature 300 300 pA/°C en Noise: 0.1 Hz to 10 Hz 0.6 0.6 µVp-p DYNAMIC RESPONSE Small signal bandwidth CLOOP = 0, RL = 0 380 380 kHz Slew rate 3.2 3.2 mA/µs VREF #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 XTR115 2.5 2.5 V XTR116 4.096 4.096 V Voltage accuracy IREF = 0 ±0.05 ±0.25 ±0.05 ±0.5 % vs Temperature TA = –40°C to +85°C ±20 ±35 ±20 ±75 ppm/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±1 ±10 ±1 ±10 ppm/V vs Load IREF = 0 mA to 2.5 mA ±200 ±200 ppm/mA Noise 0.1 Hz to 10 Hz 10 10 µVp-p Short-circuit current 16 16 mA VREG #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 Voltage 5 5 V Voltage accuracy IREG = 0 ±0.05 ±0.1 ±0.05 ±0.1 V vs Temperature TA = –40°C to +85°C ±0.1 ±0.1 mV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V 1 1 mV/V vs Output current See Typical Characteristics See Typical Characteristics Short-circuit current 12 12 mA POWER SUPPLY, V+ Quiescent current 200 250 200 250 µA TA = –40°C to +85°C 240 300 240 300 µA Does not include initial error or TCR of RIN. Voltage measured with respect to IRET pin. at TA = 25°C, V+ = 24 V, RIN = 20 kΩ, and TIP29C external transistor (unless otherwise noted) PARAMETER TEST CONDITIONS XTR115U, XTR116U XTR115UA, XTR116UA UNIT MIN TYP MAX MIN TYP MAX OUTPUT IO Output current equation IO = IIN × 100 IO = IIN × 100 Output current, linear range 0.25 25 0.25 25 mA ILIM Overscale limit 32 32 mA IMIN Underscale limit IREG = 0, IREF = 0 0.2 0.25 0.2 0.25 mA SPAN S Span (current gain) 100 100 A/A Error#GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-FB4C44A3-5DD9-482E-8663-7111C66039AB IOUT = 250 mA to 25 mA ±0.05 ±0.2 ±0.05 ±0.4 % vs Temperature TA = –40°C to +85°C ±3 ±20 ±3 ±20 ppm/°C Nonlinearity IIN = 250 mA to 25 mA ±0.003 ±0.01 ±0.003 ±0.02 % INPUT VOS Offset voltage (op amp) IIN = 40 mA ±100 ±250 ±100 ±500 µV vs Temperature TA = –40°C to +85°C ±0.7 ±3 ±0.7 ±6 µV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±0.1 ±2 ±0.1 ±2 µV/V IB Bias current –35 –35 nA vs Temperature 300 300 pA/°C en Noise: 0.1 Hz to 10 Hz 0.6 0.6 µVp-p DYNAMIC RESPONSE Small signal bandwidth CLOOP = 0, RL = 0 380 380 kHz Slew rate 3.2 3.2 mA/µs VREF #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 XTR115 2.5 2.5 V XTR116 4.096 4.096 V Voltage accuracy IREF = 0 ±0.05 ±0.25 ±0.05 ±0.5 % vs Temperature TA = –40°C to +85°C ±20 ±35 ±20 ±75 ppm/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±1 ±10 ±1 ±10 ppm/V vs Load IREF = 0 mA to 2.5 mA ±200 ±200 ppm/mA Noise 0.1 Hz to 10 Hz 10 10 µVp-p Short-circuit current 16 16 mA VREG #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 Voltage 5 5 V Voltage accuracy IREG = 0 ±0.05 ±0.1 ±0.05 ±0.1 V vs Temperature TA = –40°C to +85°C ±0.1 ±0.1 mV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V 1 1 mV/V vs Output current See Typical Characteristics See Typical Characteristics Short-circuit current 12 12 mA POWER SUPPLY, V+ Quiescent current 200 250 200 250 µA TA = –40°C to +85°C 240 300 240 300 µA Does not include initial error or TCR of RIN. Voltage measured with respect to IRET pin. at TA = 25°C, V+ = 24 V, RIN = 20 kΩ, and TIP29C external transistor (unless otherwise noted) PARAMETER TEST CONDITIONS XTR115U, XTR116U XTR115UA, XTR116UA UNIT MIN TYP MAX MIN TYP MAX OUTPUT IO Output current equation IO = IIN × 100 IO = IIN × 100 Output current, linear range 0.25 25 0.25 25 mA ILIM Overscale limit 32 32 mA IMIN Underscale limit IREG = 0, IREF = 0 0.2 0.25 0.2 0.25 mA SPAN S Span (current gain) 100 100 A/A Error#GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-FB4C44A3-5DD9-482E-8663-7111C66039AB IOUT = 250 mA to 25 mA ±0.05 ±0.2 ±0.05 ±0.4 % vs Temperature TA = –40°C to +85°C ±3 ±20 ±3 ±20 ppm/°C Nonlinearity IIN = 250 mA to 25 mA ±0.003 ±0.01 ±0.003 ±0.02 % INPUT VOS Offset voltage (op amp) IIN = 40 mA ±100 ±250 ±100 ±500 µV vs Temperature TA = –40°C to +85°C ±0.7 ±3 ±0.7 ±6 µV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±0.1 ±2 ±0.1 ±2 µV/V IB Bias current –35 –35 nA vs Temperature 300 300 pA/°C en Noise: 0.1 Hz to 10 Hz 0.6 0.6 µVp-p DYNAMIC RESPONSE Small signal bandwidth CLOOP = 0, RL = 0 380 380 kHz Slew rate 3.2 3.2 mA/µs VREF #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 XTR115 2.5 2.5 V XTR116 4.096 4.096 V Voltage accuracy IREF = 0 ±0.05 ±0.25 ±0.05 ±0.5 % vs Temperature TA = –40°C to +85°C ±20 ±35 ±20 ±75 ppm/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±1 ±10 ±1 ±10 ppm/V vs Load IREF = 0 mA to 2.5 mA ±200 ±200 ppm/mA Noise 0.1 Hz to 10 Hz 10 10 µVp-p Short-circuit current 16 16 mA VREG #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 Voltage 5 5 V Voltage accuracy IREG = 0 ±0.05 ±0.1 ±0.05 ±0.1 V vs Temperature TA = –40°C to +85°C ±0.1 ±0.1 mV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V 1 1 mV/V vs Output current See Typical Characteristics See Typical Characteristics Short-circuit current 12 12 mA POWER SUPPLY, V+ Quiescent current 200 250 200 250 µA TA = –40°C to +85°C 240 300 240 300 µA at TA = 25°C, V+ = 24 V, RIN = 20 kΩ, and TIP29C external transistor (unless otherwise noted)AIN PARAMETER TEST CONDITIONS XTR115U, XTR116U XTR115UA, XTR116UA UNIT MIN TYP MAX MIN TYP MAX OUTPUT IO Output current equation IO = IIN × 100 IO = IIN × 100 Output current, linear range 0.25 25 0.25 25 mA ILIM Overscale limit 32 32 mA IMIN Underscale limit IREG = 0, IREF = 0 0.2 0.25 0.2 0.25 mA SPAN S Span (current gain) 100 100 A/A Error#GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-FB4C44A3-5DD9-482E-8663-7111C66039AB IOUT = 250 mA to 25 mA ±0.05 ±0.2 ±0.05 ±0.4 % vs Temperature TA = –40°C to +85°C ±3 ±20 ±3 ±20 ppm/°C Nonlinearity IIN = 250 mA to 25 mA ±0.003 ±0.01 ±0.003 ±0.02 % INPUT VOS Offset voltage (op amp) IIN = 40 mA ±100 ±250 ±100 ±500 µV vs Temperature TA = –40°C to +85°C ±0.7 ±3 ±0.7 ±6 µV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±0.1 ±2 ±0.1 ±2 µV/V IB Bias current –35 –35 nA vs Temperature 300 300 pA/°C en Noise: 0.1 Hz to 10 Hz 0.6 0.6 µVp-p DYNAMIC RESPONSE Small signal bandwidth CLOOP = 0, RL = 0 380 380 kHz Slew rate 3.2 3.2 mA/µs VREF #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 XTR115 2.5 2.5 V XTR116 4.096 4.096 V Voltage accuracy IREF = 0 ±0.05 ±0.25 ±0.05 ±0.5 % vs Temperature TA = –40°C to +85°C ±20 ±35 ±20 ±75 ppm/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±1 ±10 ±1 ±10 ppm/V vs Load IREF = 0 mA to 2.5 mA ±200 ±200 ppm/mA Noise 0.1 Hz to 10 Hz 10 10 µVp-p Short-circuit current 16 16 mA VREG #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 Voltage 5 5 V Voltage accuracy IREG = 0 ±0.05 ±0.1 ±0.05 ±0.1 V vs Temperature TA = –40°C to +85°C ±0.1 ±0.1 mV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V 1 1 mV/V vs Output current See Typical Characteristics See Typical Characteristics Short-circuit current 12 12 mA POWER SUPPLY, V+ Quiescent current 200 250 200 250 µA TA = –40°C to +85°C 240 300 240 300 µA PARAMETER TEST CONDITIONS XTR115U, XTR116U XTR115UA, XTR116UA UNIT MIN TYP MAX MIN TYP MAX PARAMETER TEST CONDITIONS XTR115U, XTR116U XTR115UA, XTR116UA UNIT PARAMETERTEST CONDITIONSXTR115U, XTR116UXTR115UA, XTR116UAUNIT MIN TYP MAX MIN TYP MAX MINTYPMAXMINTYPMAX OUTPUT IO Output current equation IO = IIN × 100 IO = IIN × 100 Output current, linear range 0.25 25 0.25 25 mA ILIM Overscale limit 32 32 mA IMIN Underscale limit IREG = 0, IREF = 0 0.2 0.25 0.2 0.25 mA SPAN S Span (current gain) 100 100 A/A Error#GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-FB4C44A3-5DD9-482E-8663-7111C66039AB IOUT = 250 mA to 25 mA ±0.05 ±0.2 ±0.05 ±0.4 % vs Temperature TA = –40°C to +85°C ±3 ±20 ±3 ±20 ppm/°C Nonlinearity IIN = 250 mA to 25 mA ±0.003 ±0.01 ±0.003 ±0.02 % INPUT VOS Offset voltage (op amp) IIN = 40 mA ±100 ±250 ±100 ±500 µV vs Temperature TA = –40°C to +85°C ±0.7 ±3 ±0.7 ±6 µV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±0.1 ±2 ±0.1 ±2 µV/V IB Bias current –35 –35 nA vs Temperature 300 300 pA/°C en Noise: 0.1 Hz to 10 Hz 0.6 0.6 µVp-p DYNAMIC RESPONSE Small signal bandwidth CLOOP = 0, RL = 0 380 380 kHz Slew rate 3.2 3.2 mA/µs VREF #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 XTR115 2.5 2.5 V XTR116 4.096 4.096 V Voltage accuracy IREF = 0 ±0.05 ±0.25 ±0.05 ±0.5 % vs Temperature TA = –40°C to +85°C ±20 ±35 ±20 ±75 ppm/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±1 ±10 ±1 ±10 ppm/V vs Load IREF = 0 mA to 2.5 mA ±200 ±200 ppm/mA Noise 0.1 Hz to 10 Hz 10 10 µVp-p Short-circuit current 16 16 mA VREG #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 Voltage 5 5 V Voltage accuracy IREG = 0 ±0.05 ±0.1 ±0.05 ±0.1 V vs Temperature TA = –40°C to +85°C ±0.1 ±0.1 mV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V 1 1 mV/V vs Output current See Typical Characteristics See Typical Characteristics Short-circuit current 12 12 mA POWER SUPPLY, V+ Quiescent current 200 250 200 250 µA TA = –40°C to +85°C 240 300 240 300 µA OUTPUT OUTPUT IO Output current equation IO = IIN × 100 IO = IIN × 100 IO OOutput current equation IO = IIN × 100OIN IO = IIN × 100OIN Output current, linear range 0.25 25 0.25 25 mA Output current, linear range 0.2525 0.2525mA ILIM Overscale limit 32 32 mA ILIM LIMOverscale limit 32 32 mA IMIN Underscale limit IREG = 0, IREF = 0 0.2 0.25 0.2 0.25 mA IMIN MINUnderscale limitIREG = 0, IREF = 0REGREF0.20.250.20.25mA SPAN SPAN S Span (current gain) 100 100 A/A SSpan (current gain) 100 100 A/A Error#GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-FB4C44A3-5DD9-482E-8663-7111C66039AB IOUT = 250 mA to 25 mA ±0.05 ±0.2 ±0.05 ±0.4 % Error#GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-FB4C44A3-5DD9-482E-8663-7111C66039AB #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-FB4C44A3-5DD9-482E-8663-7111C66039ABIOUT = 250 mA to 25 mAOUT±0.05±0.2±0.05±0.4% vs Temperature TA = –40°C to +85°C ±3 ±20 ±3 ±20 ppm/°C vs TemperatureTA = –40°C to +85°CA±3±20±3±20ppm/°C Nonlinearity IIN = 250 mA to 25 mA ±0.003 ±0.01 ±0.003 ±0.02 % NonlinearityIIN = 250 mA to 25 mAIN±0.003±0.01±0.003±0.02% INPUT INPUT VOS Offset voltage (op amp) IIN = 40 mA ±100 ±250 ±100 ±500 µV VOS OSOffset voltage (op amp)IIN = 40 mAIN±100±250±100±500µV vs Temperature TA = –40°C to +85°C ±0.7 ±3 ±0.7 ±6 µV/°C vs TemperatureTA = –40°C to +85°CA±0.7±3±0.7±6µV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±0.1 ±2 ±0.1 ±2 µV/V vs Supply voltage, V+V+ = 7.5 V to 36 V±0.1±2±0.1±2µV/V IB Bias current –35 –35 nA IB BBias current –35 –35 nA vs Temperature 300 300 pA/°C vs Temperature 300 300 pA/°C en Noise: 0.1 Hz to 10 Hz 0.6 0.6 µVp-p en nNoise: 0.1 Hz to 10 Hz 0.6 0.6 µVp-p DYNAMIC RESPONSE DYNAMIC RESPONSE Small signal bandwidth CLOOP = 0, RL = 0 380 380 kHz Small signal bandwidth CLOOP = 0, RL = 0LOOPL 380 380 kHz Slew rate 3.2 3.2 mA/µs Slew rate3.23.2mA/µs VREF #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 VREF #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 REF#GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 XTR115 2.5 2.5 V XTR1152.52.5V XTR116 4.096 4.096 V XTR116 4.096 4.096 V Voltage accuracy IREF = 0 ±0.05 ±0.25 ±0.05 ±0.5 % Voltage accuracyIREF = 0REF±0.05±0.25±0.05±0.5% vs Temperature TA = –40°C to +85°C ±20 ±35 ±20 ±75 ppm/°C vs TemperatureTA = –40°C to +85°CA±20±35±20±75ppm/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V ±1 ±10 ±1 ±10 ppm/V vs Supply voltage, V+V+ = 7.5 V to 36 V±1±10±1±10ppm/V vs Load IREF = 0 mA to 2.5 mA ±200 ±200 ppm/mA vs LoadIREF = 0 mA to 2.5 mAREF±200 ±200 ppm/mA Noise 0.1 Hz to 10 Hz 10 10 µVp-p Noise0.1 Hz to 10 Hz1010µVp-p Short-circuit current 16 16 mA Short-circuit current 16 16 mA VREG #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 VREG #GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 REG#GUID-3668E7FB-14B2-41F4-9339-CF8FDB0FBDB1/GUID-4C435B8B-E6F2-49B0-A602-348C4BFD2F68 Voltage 5 5 V Voltage55V Voltage accuracy IREG = 0 ±0.05 ±0.1 ±0.05 ±0.1 V Voltage accuracyIREG = 0REG ±0.05±0.1±0.05±0.1V vs Temperature TA = –40°C to +85°C ±0.1 ±0.1 mV/°C vs TemperatureTA = –40°C to +85°CA ±0.1±0.1 mV/°C vs Supply voltage, V+ V+ = 7.5 V to 36 V 1 1 mV/V vs Supply voltage, V+V+ = 7.5 V to 36 V 11 mV/V vs Output current See Typical Characteristics See Typical Characteristics vs Output current See Typical Characteristics Typical CharacteristicsSee Typical Characteristics Typical Characteristics Short-circuit current 12 12 mA Short-circuit current 1212 mA POWER SUPPLY, V+ POWER SUPPLY, V+ Quiescent current 200 250 200 250 µA Quiescent current200250200250µA TA = –40°C to +85°C 240 300 240 300 µA TA = –40°C to +85°CA240300240300µA Does not include initial error or TCR of RIN. Voltage measured with respect to IRET pin. Does not include initial error or TCR of RIN.INVoltage measured with respect to IRET pin.RET Typical Characteristics At TA = 25°C, V+ = 24 V, RIN = 20 kΩ, and TIP29C external transistor (unless otherwise noted) Current Gain vs Frequency   Quiescent Current vs Temperature   Reference Voltage vs Temperature   Overscale Current vs Temperature   VREG Voltage vs VREG Current   Typical Characteristics At TA = 25°C, V+ = 24 V, RIN = 20 kΩ, and TIP29C external transistor (unless otherwise noted) Current Gain vs Frequency   Quiescent Current vs Temperature   Reference Voltage vs Temperature   Overscale Current vs Temperature   VREG Voltage vs VREG Current   At TA = 25°C, V+ = 24 V, RIN = 20 kΩ, and TIP29C external transistor (unless otherwise noted) Current Gain vs Frequency   Quiescent Current vs Temperature   Reference Voltage vs Temperature   Overscale Current vs Temperature   VREG Voltage vs VREG Current   At TA = 25°C, V+ = 24 V, RIN = 20 kΩ, and TIP29C external transistor (unless otherwise noted)AIN Current Gain vs Frequency   Quiescent Current vs Temperature   Reference Voltage vs Temperature   Overscale Current vs Temperature   VREG Voltage vs VREG Current   Current Gain vs Frequency   Current Gain vs Frequency             Quiescent Current vs Temperature   Quiescent Current vs Temperature             Reference Voltage vs Temperature   Reference Voltage vs Temperature             Overscale Current vs Temperature   Overscale Current vs Temperature             VREG Voltage vs VREG Current   VREG Voltage vs VREG CurrentREGREG             Detailed Description Overview The XTR115 and XTR116 are precision current output converters designed to transmit analog 4-mA-to-20-mA signals over an industry standard current loop. The regulator and reference voltages power a sensor, such as a bridge as shown in . The sensor output, as a current signal IIN, is gained up and transmitted over the loop to be read by a receiver. Typical Schematic Functional Block Diagram Feature Description Reverse-Voltage Protection The XTR11x low compliance voltage rating (7.5 V) permits the use of various voltage protection methods without compromising the operating range. shows a diode bridge circuit that allows normal operation even when the voltage connection lines are reversed. The bridge causes a two-diode drop (approximately 1.4 V) loss in loop supply voltage. This loss results in a compliance voltage of approximately 9 V—satisfactory for most applications. A diode can be inserted in series with the loop supply voltage and the V+ pin to protect against reverse output connection lines with only a 0.7-V loss in loop supply voltage. Reverse Voltage Operation and Overvoltage Surge Protection (1) Zener Diode 36 V: 1N4753A or Motorola P6KE39A. Use lower-voltage Zener diodes with loop power-supply voltages less than 30 V for increased protection; see . Overvoltage Surge Protection Remote connections to current transmitters can sometimes be subjected to voltage surges. Best practice is to limit the maximum surge voltage applied to the XTR11x to as low as practical. Various Zener and surge clamping diodes are specially designed for this purpose. Select a clamp diode with as low a voltage rating as possible for best protection. For example, a 36-V protection diode provides proper transmitter operation at normal loop voltages, and also provides an appropriate level of protection against voltage surges. Characterization tests on several production lots showed no damage with loop supply voltages up to 65 V. Most surge protection Zener diodes have a diode characteristic in the forward direction that conducts excessive current, possibly damaging receiving-side circuitry if the loop connections are reversed. If a surge protection diode is used, also use a series diode or diode bridge for protection against reversed connections. Detailed Description Overview The XTR115 and XTR116 are precision current output converters designed to transmit analog 4-mA-to-20-mA signals over an industry standard current loop. The regulator and reference voltages power a sensor, such as a bridge as shown in . The sensor output, as a current signal IIN, is gained up and transmitted over the loop to be read by a receiver. Typical Schematic Overview The XTR115 and XTR116 are precision current output converters designed to transmit analog 4-mA-to-20-mA signals over an industry standard current loop. The regulator and reference voltages power a sensor, such as a bridge as shown in . The sensor output, as a current signal IIN, is gained up and transmitted over the loop to be read by a receiver. Typical Schematic The XTR115 and XTR116 are precision current output converters designed to transmit analog 4-mA-to-20-mA signals over an industry standard current loop. The regulator and reference voltages power a sensor, such as a bridge as shown in . The sensor output, as a current signal IIN, is gained up and transmitted over the loop to be read by a receiver. Typical Schematic The XTR115 and XTR116 are precision current output converters designed to transmit analog 4-mA-to-20-mA signals over an industry standard current loop. The regulator and reference voltages power a sensor, such as a bridge as shown in . The sensor output, as a current signal IIN, is gained up and transmitted over the loop to be read by a receiver.IN Typical Schematic Typical Schematic Functional Block Diagram Functional Block Diagram Feature Description Reverse-Voltage Protection The XTR11x low compliance voltage rating (7.5 V) permits the use of various voltage protection methods without compromising the operating range. shows a diode bridge circuit that allows normal operation even when the voltage connection lines are reversed. The bridge causes a two-diode drop (approximately 1.4 V) loss in loop supply voltage. This loss results in a compliance voltage of approximately 9 V—satisfactory for most applications. A diode can be inserted in series with the loop supply voltage and the V+ pin to protect against reverse output connection lines with only a 0.7-V loss in loop supply voltage. Reverse Voltage Operation and Overvoltage Surge Protection (1) Zener Diode 36 V: 1N4753A or Motorola P6KE39A. Use lower-voltage Zener diodes with loop power-supply voltages less than 30 V for increased protection; see . Overvoltage Surge Protection Remote connections to current transmitters can sometimes be subjected to voltage surges. Best practice is to limit the maximum surge voltage applied to the XTR11x to as low as practical. Various Zener and surge clamping diodes are specially designed for this purpose. Select a clamp diode with as low a voltage rating as possible for best protection. For example, a 36-V protection diode provides proper transmitter operation at normal loop voltages, and also provides an appropriate level of protection against voltage surges. Characterization tests on several production lots showed no damage with loop supply voltages up to 65 V. Most surge protection Zener diodes have a diode characteristic in the forward direction that conducts excessive current, possibly damaging receiving-side circuitry if the loop connections are reversed. If a surge protection diode is used, also use a series diode or diode bridge for protection against reversed connections. Feature Description Reverse-Voltage Protection The XTR11x low compliance voltage rating (7.5 V) permits the use of various voltage protection methods without compromising the operating range. shows a diode bridge circuit that allows normal operation even when the voltage connection lines are reversed. The bridge causes a two-diode drop (approximately 1.4 V) loss in loop supply voltage. This loss results in a compliance voltage of approximately 9 V—satisfactory for most applications. A diode can be inserted in series with the loop supply voltage and the V+ pin to protect against reverse output connection lines with only a 0.7-V loss in loop supply voltage. Reverse Voltage Operation and Overvoltage Surge Protection (1) Zener Diode 36 V: 1N4753A or Motorola P6KE39A. Use lower-voltage Zener diodes with loop power-supply voltages less than 30 V for increased protection; see . Reverse-Voltage Protection The XTR11x low compliance voltage rating (7.5 V) permits the use of various voltage protection methods without compromising the operating range. shows a diode bridge circuit that allows normal operation even when the voltage connection lines are reversed. The bridge causes a two-diode drop (approximately 1.4 V) loss in loop supply voltage. This loss results in a compliance voltage of approximately 9 V—satisfactory for most applications. A diode can be inserted in series with the loop supply voltage and the V+ pin to protect against reverse output connection lines with only a 0.7-V loss in loop supply voltage. Reverse Voltage Operation and Overvoltage Surge Protection (1) Zener Diode 36 V: 1N4753A or Motorola P6KE39A. Use lower-voltage Zener diodes with loop power-supply voltages less than 30 V for increased protection; see . The XTR11x low compliance voltage rating (7.5 V) permits the use of various voltage protection methods without compromising the operating range. shows a diode bridge circuit that allows normal operation even when the voltage connection lines are reversed. The bridge causes a two-diode drop (approximately 1.4 V) loss in loop supply voltage. This loss results in a compliance voltage of approximately 9 V—satisfactory for most applications. A diode can be inserted in series with the loop supply voltage and the V+ pin to protect against reverse output connection lines with only a 0.7-V loss in loop supply voltage. Reverse Voltage Operation and Overvoltage Surge Protection (1) Zener Diode 36 V: 1N4753A or Motorola P6KE39A. Use lower-voltage Zener diodes with loop power-supply voltages less than 30 V for increased protection; see . The XTR11x low compliance voltage rating (7.5 V) permits the use of various voltage protection methods without compromising the operating range. shows a diode bridge circuit that allows normal operation even when the voltage connection lines are reversed. The bridge causes a two-diode drop (approximately 1.4 V) loss in loop supply voltage. This loss results in a compliance voltage of approximately 9 V—satisfactory for most applications. A diode can be inserted in series with the loop supply voltage and the V+ pin to protect against reverse output connection lines with only a 0.7-V loss in loop supply voltage. Reverse Voltage Operation and Overvoltage Surge Protection (1) Zener Diode 36 V: 1N4753A or Motorola P6KE39A. Use lower-voltage Zener diodes with loop power-supply voltages less than 30 V for increased protection; see . Reverse Voltage Operation and Overvoltage Surge Protection(1) Zener Diode 36 V: 1N4753A or Motorola P6KE39A. Use lower-voltage Zener diodes with loop power-supply voltages less than 30 V for increased protection; see . Overvoltage Surge Protection Remote connections to current transmitters can sometimes be subjected to voltage surges. Best practice is to limit the maximum surge voltage applied to the XTR11x to as low as practical. Various Zener and surge clamping diodes are specially designed for this purpose. Select a clamp diode with as low a voltage rating as possible for best protection. For example, a 36-V protection diode provides proper transmitter operation at normal loop voltages, and also provides an appropriate level of protection against voltage surges. Characterization tests on several production lots showed no damage with loop supply voltages up to 65 V. Most surge protection Zener diodes have a diode characteristic in the forward direction that conducts excessive current, possibly damaging receiving-side circuitry if the loop connections are reversed. If a surge protection diode is used, also use a series diode or diode bridge for protection against reversed connections. Overvoltage Surge Protection Remote connections to current transmitters can sometimes be subjected to voltage surges. Best practice is to limit the maximum surge voltage applied to the XTR11x to as low as practical. Various Zener and surge clamping diodes are specially designed for this purpose. Select a clamp diode with as low a voltage rating as possible for best protection. For example, a 36-V protection diode provides proper transmitter operation at normal loop voltages, and also provides an appropriate level of protection against voltage surges. Characterization tests on several production lots showed no damage with loop supply voltages up to 65 V. Most surge protection Zener diodes have a diode characteristic in the forward direction that conducts excessive current, possibly damaging receiving-side circuitry if the loop connections are reversed. If a surge protection diode is used, also use a series diode or diode bridge for protection against reversed connections. Remote connections to current transmitters can sometimes be subjected to voltage surges. Best practice is to limit the maximum surge voltage applied to the XTR11x to as low as practical. Various Zener and surge clamping diodes are specially designed for this purpose. Select a clamp diode with as low a voltage rating as possible for best protection. For example, a 36-V protection diode provides proper transmitter operation at normal loop voltages, and also provides an appropriate level of protection against voltage surges. Characterization tests on several production lots showed no damage with loop supply voltages up to 65 V. Most surge protection Zener diodes have a diode characteristic in the forward direction that conducts excessive current, possibly damaging receiving-side circuitry if the loop connections are reversed. If a surge protection diode is used, also use a series diode or diode bridge for protection against reversed connections. Remote connections to current transmitters can sometimes be subjected to voltage surges. Best practice is to limit the maximum surge voltage applied to the XTR11x to as low as practical. Various Zener and surge clamping diodes are specially designed for this purpose. Select a clamp diode with as low a voltage rating as possible for best protection. For example, a 36-V protection diode provides proper transmitter operation at normal loop voltages, and also provides an appropriate level of protection against voltage surges. Characterization tests on several production lots showed no damage with loop supply voltages up to 65 V. Most surge protection Zener diodes have a diode characteristic in the forward direction that conducts excessive current, possibly damaging receiving-side circuitry if the loop connections are reversed. If a surge protection diode is used, also use a series diode or diode bridge for protection against reversed connections. Application and Implementation Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. Application Information B Changed Basic Circuit Connections application diagram yes The XTR115 and XTR116 are identical devices except for the reference voltage output, pin 1. This voltage is available for external circuitry and is not used internally. Further discussions that apply to both devices refer to the XTR11x. shows basic circuit connections with representative simplified input circuitry. The XTR11x is a two-wire current transmitter. The device input signal (pin 2) controls the output current. A portion of this current flows into the V+ power supply, pin 7. The remaining current flows in Q1. External input circuitry connected to the XTR11x can be powered from VREG or VREF. Current drawn from these terminals must be returned to IRET, pin 3. This IRET pin is a local ground for input circuitry driving the XTR11x. Basic Circuit Connections (1) Also see . (2) See . The XTR11x is a current-input device with a gain of 100. A current flowing into pin 2 produces IO = 100 • IIN. The input voltage at the IIN pin is zero (referred to the IRET pin). A voltage input is created with an external input resistor, as shown. Common full-scale input voltages range from 1 V and upward. Full-scale inputs greater than 0.5 V are recommended to minimize the effect of offset voltage and drift of A1. External Transistor B Changed External Transistor applications information section to incorporate additional guidance regarding transistor power dissipation and thermal concerns yes The external transistor, Q1, conducts the majority of the full-scale output current. Power dissipation in this transistor can approach 0.8 W with high loop voltage (40 V) and 20 mA of output current. The XTR11x is designed to use an external transistor to avoid on-chip, thermal-induced errors. Heat produced by Q1 still causes ambient temperature changes that can affect the XTR11x. To minimize these effects, locate Q1 away from sensitive analog circuitry, including the XTR11x. Mount Q1 so that heat is conducted to the outside of the transducer housing and away from the XTR11x. The XTR11x is designed to use virtually any NPN transistor with sufficient voltage, current, and power rating. Case style and thermal mounting considerations often influence the choice for any given application. Several possible choices are listed in . A MOSFET transistor does not improve the accuracy of the XTR11x and is not recommended. Although the XTR11x can be used without an additional external transistor, this configuration is not always practical at higher loop voltages and currents because of self-heating concerns. Minimum Scale Current The quiescent current of the XTR11x (typically 200 μA) is the lower limit of the device output current. Zero input current (IIN = 0 A) produces an IO equal to the quiescent current. Output current does not begin to increase until IIN > IQ / 100. Current drawn from VREF or VREG adds to this minimum output current. This means that more than 3.7 mA is available to power external circuitry while still allowing the output current to go below 4 mA. Offsetting the Input A low scale of 4 mA is produced by creating a 40-μA input current. This low-scale offset can be created with the proper value resistor from VREF (as shown in , or by generating offset in the input drive circuitry. Creating Low-Scale Offset Maximum Output Current The XTR11x provide accurate, linear output up to 25 mA. Internal circuitry limits the output current to approximately 32 mA to protect the transmitter and loop power or measurement circuitry. Extending the output current range of the XTR11x is possible by connecting an external resistor from pin 3 to pin 5 to change the current limit value. All output current must flow through internal resistors; therefore, damage is possible with excessive current. Output currents greater than 45 mA can cause permanent damage. Digital Control Methods Radio Frequency Interference The long wire lengths of current loops invite radio frequency interference (RF). RF can be rectified by the input circuitry of the XTR11x or preceding circuitry. This RF generally appears as an unstable output current that varies with the position of loop supply or input wiring. Interference can also enter at the input pins. For integrated transmitter assemblies with short connection to the sensor, the interference more likely comes from the current-loop connections. Circuit Stability B Added Circuit Stability application information section yes The 4-20 mA control-loop stability must be evaluated for any XTR11x design. A 10‑nF decoupling capacitor between V+ and IO is recommended for most applications. As this capacitance appears in parallel with the load resistance RLOAD from a stability perspective, the capacitor and resistor form a filter corner that can limit the bandwidth of the system. Therefore, for HART applications, use a bypass capacitance of 2 nF to 3 nF instead. For applications with EMI and EMC concerns, use a bypass capacitor with sufficiently low ESR to decouple any ripple voltage from the VLOOP supply. Otherwise, the ripple voltage couples onto the 4‑mA to 20‑mA current source, and appears as noise across RLOAD after the current-to-voltage conversion. Additionally, stability concerns apply to the VREF reference buffer when driving capacitive loads. shows that two filtering capacitors are required, one CHF of 10 pF to 0.5 µF and another CLF of 2.2 µF to 22 µF. Either a series isolation resistance RISO or a snubber RCOMP is used, depending on application requirements. Stable Operation With Capacitive Load on VREF (1) Required compensation components. Application and Implementation Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. Application Information B Changed Basic Circuit Connections application diagram yes The XTR115 and XTR116 are identical devices except for the reference voltage output, pin 1. This voltage is available for external circuitry and is not used internally. Further discussions that apply to both devices refer to the XTR11x. shows basic circuit connections with representative simplified input circuitry. The XTR11x is a two-wire current transmitter. The device input signal (pin 2) controls the output current. A portion of this current flows into the V+ power supply, pin 7. The remaining current flows in Q1. External input circuitry connected to the XTR11x can be powered from VREG or VREF. Current drawn from these terminals must be returned to IRET, pin 3. This IRET pin is a local ground for input circuitry driving the XTR11x. Basic Circuit Connections (1) Also see . (2) See . The XTR11x is a current-input device with a gain of 100. A current flowing into pin 2 produces IO = 100 • IIN. The input voltage at the IIN pin is zero (referred to the IRET pin). A voltage input is created with an external input resistor, as shown. Common full-scale input voltages range from 1 V and upward. Full-scale inputs greater than 0.5 V are recommended to minimize the effect of offset voltage and drift of A1. External Transistor B Changed External Transistor applications information section to incorporate additional guidance regarding transistor power dissipation and thermal concerns yes The external transistor, Q1, conducts the majority of the full-scale output current. Power dissipation in this transistor can approach 0.8 W with high loop voltage (40 V) and 20 mA of output current. The XTR11x is designed to use an external transistor to avoid on-chip, thermal-induced errors. Heat produced by Q1 still causes ambient temperature changes that can affect the XTR11x. To minimize these effects, locate Q1 away from sensitive analog circuitry, including the XTR11x. Mount Q1 so that heat is conducted to the outside of the transducer housing and away from the XTR11x. The XTR11x is designed to use virtually any NPN transistor with sufficient voltage, current, and power rating. Case style and thermal mounting considerations often influence the choice for any given application. Several possible choices are listed in . A MOSFET transistor does not improve the accuracy of the XTR11x and is not recommended. Although the XTR11x can be used without an additional external transistor, this configuration is not always practical at higher loop voltages and currents because of self-heating concerns. Minimum Scale Current The quiescent current of the XTR11x (typically 200 μA) is the lower limit of the device output current. Zero input current (IIN = 0 A) produces an IO equal to the quiescent current. Output current does not begin to increase until IIN > IQ / 100. Current drawn from VREF or VREG adds to this minimum output current. This means that more than 3.7 mA is available to power external circuitry while still allowing the output current to go below 4 mA. Offsetting the Input A low scale of 4 mA is produced by creating a 40-μA input current. This low-scale offset can be created with the proper value resistor from VREF (as shown in , or by generating offset in the input drive circuitry. Creating Low-Scale Offset Maximum Output Current The XTR11x provide accurate, linear output up to 25 mA. Internal circuitry limits the output current to approximately 32 mA to protect the transmitter and loop power or measurement circuitry. Extending the output current range of the XTR11x is possible by connecting an external resistor from pin 3 to pin 5 to change the current limit value. All output current must flow through internal resistors; therefore, damage is possible with excessive current. Output currents greater than 45 mA can cause permanent damage. Digital Control Methods Radio Frequency Interference The long wire lengths of current loops invite radio frequency interference (RF). RF can be rectified by the input circuitry of the XTR11x or preceding circuitry. This RF generally appears as an unstable output current that varies with the position of loop supply or input wiring. Interference can also enter at the input pins. For integrated transmitter assemblies with short connection to the sensor, the interference more likely comes from the current-loop connections. Circuit Stability B Added Circuit Stability application information section yes The 4-20 mA control-loop stability must be evaluated for any XTR11x design. A 10‑nF decoupling capacitor between V+ and IO is recommended for most applications. As this capacitance appears in parallel with the load resistance RLOAD from a stability perspective, the capacitor and resistor form a filter corner that can limit the bandwidth of the system. Therefore, for HART applications, use a bypass capacitance of 2 nF to 3 nF instead. For applications with EMI and EMC concerns, use a bypass capacitor with sufficiently low ESR to decouple any ripple voltage from the VLOOP supply. Otherwise, the ripple voltage couples onto the 4‑mA to 20‑mA current source, and appears as noise across RLOAD after the current-to-voltage conversion. Additionally, stability concerns apply to the VREF reference buffer when driving capacitive loads. shows that two filtering capacitors are required, one CHF of 10 pF to 0.5 µF and another CLF of 2.2 µF to 22 µF. Either a series isolation resistance RISO or a snubber RCOMP is used, depending on application requirements. Stable Operation With Capacitive Load on VREF (1) Required compensation components. Application Information B Changed Basic Circuit Connections application diagram yes B Changed Basic Circuit Connections application diagram yes B Changed Basic Circuit Connections application diagram yes BChanged Basic Circuit Connections application diagramBasic Circuit Connectionsyes The XTR115 and XTR116 are identical devices except for the reference voltage output, pin 1. This voltage is available for external circuitry and is not used internally. Further discussions that apply to both devices refer to the XTR11x. shows basic circuit connections with representative simplified input circuitry. The XTR11x is a two-wire current transmitter. The device input signal (pin 2) controls the output current. A portion of this current flows into the V+ power supply, pin 7. The remaining current flows in Q1. External input circuitry connected to the XTR11x can be powered from VREG or VREF. Current drawn from these terminals must be returned to IRET, pin 3. This IRET pin is a local ground for input circuitry driving the XTR11x. Basic Circuit Connections (1) Also see . (2) See . The XTR11x is a current-input device with a gain of 100. A current flowing into pin 2 produces IO = 100 • IIN. The input voltage at the IIN pin is zero (referred to the IRET pin). A voltage input is created with an external input resistor, as shown. Common full-scale input voltages range from 1 V and upward. Full-scale inputs greater than 0.5 V are recommended to minimize the effect of offset voltage and drift of A1. The XTR115 and XTR116 are identical devices except for the reference voltage output, pin 1. This voltage is available for external circuitry and is not used internally. Further discussions that apply to both devices refer to the XTR11x. shows basic circuit connections with representative simplified input circuitry. The XTR11x is a two-wire current transmitter. The device input signal (pin 2) controls the output current. A portion of this current flows into the V+ power supply, pin 7. The remaining current flows in Q1. External input circuitry connected to the XTR11x can be powered from VREG or VREF. Current drawn from these terminals must be returned to IRET, pin 3. This IRET pin is a local ground for input circuitry driving the XTR11x. Basic Circuit Connections (1) Also see . (2) See . The XTR11x is a current-input device with a gain of 100. A current flowing into pin 2 produces IO = 100 • IIN. The input voltage at the IIN pin is zero (referred to the IRET pin). A voltage input is created with an external input resistor, as shown. Common full-scale input voltages range from 1 V and upward. Full-scale inputs greater than 0.5 V are recommended to minimize the effect of offset voltage and drift of A1. The XTR115 and XTR116 are identical devices except for the reference voltage output, pin 1. This voltage is available for external circuitry and is not used internally. Further discussions that apply to both devices refer to the XTR11x. shows basic circuit connections with representative simplified input circuitry. The XTR11x is a two-wire current transmitter. The device input signal (pin 2) controls the output current. A portion of this current flows into the V+ power supply, pin 7. The remaining current flows in Q1. External input circuitry connected to the XTR11x can be powered from VREG or VREF. Current drawn from these terminals must be returned to IRET, pin 3. This IRET pin is a local ground for input circuitry driving the XTR11x. 1local ground Basic Circuit Connections (1) Also see . (2) See . Basic Circuit Connections(1) Also see .(2) See .The XTR11x is a current-input device with a gain of 100. A current flowing into pin 2 produces IO = 100 • IIN. The input voltage at the IIN pin is zero (referred to the IRET pin). A voltage input is created with an external input resistor, as shown. Common full-scale input voltages range from 1 V and upward. Full-scale inputs greater than 0.5 V are recommended to minimize the effect of offset voltage and drift of A1.OININRET External Transistor B Changed External Transistor applications information section to incorporate additional guidance regarding transistor power dissipation and thermal concerns yes The external transistor, Q1, conducts the majority of the full-scale output current. Power dissipation in this transistor can approach 0.8 W with high loop voltage (40 V) and 20 mA of output current. The XTR11x is designed to use an external transistor to avoid on-chip, thermal-induced errors. Heat produced by Q1 still causes ambient temperature changes that can affect the XTR11x. To minimize these effects, locate Q1 away from sensitive analog circuitry, including the XTR11x. Mount Q1 so that heat is conducted to the outside of the transducer housing and away from the XTR11x. The XTR11x is designed to use virtually any NPN transistor with sufficient voltage, current, and power rating. Case style and thermal mounting considerations often influence the choice for any given application. Several possible choices are listed in . A MOSFET transistor does not improve the accuracy of the XTR11x and is not recommended. Although the XTR11x can be used without an additional external transistor, this configuration is not always practical at higher loop voltages and currents because of self-heating concerns. External Transistor B Changed External Transistor applications information section to incorporate additional guidance regarding transistor power dissipation and thermal concerns yes B Changed External Transistor applications information section to incorporate additional guidance regarding transistor power dissipation and thermal concerns yes B Changed External Transistor applications information section to incorporate additional guidance regarding transistor power dissipation and thermal concerns yes BChanged External Transistor applications information section to incorporate additional guidance regarding transistor power dissipation and thermal concernsExternal Transistoryes The external transistor, Q1, conducts the majority of the full-scale output current. Power dissipation in this transistor can approach 0.8 W with high loop voltage (40 V) and 20 mA of output current. The XTR11x is designed to use an external transistor to avoid on-chip, thermal-induced errors. Heat produced by Q1 still causes ambient temperature changes that can affect the XTR11x. To minimize these effects, locate Q1 away from sensitive analog circuitry, including the XTR11x. Mount Q1 so that heat is conducted to the outside of the transducer housing and away from the XTR11x. The XTR11x is designed to use virtually any NPN transistor with sufficient voltage, current, and power rating. Case style and thermal mounting considerations often influence the choice for any given application. Several possible choices are listed in . A MOSFET transistor does not improve the accuracy of the XTR11x and is not recommended. Although the XTR11x can be used without an additional external transistor, this configuration is not always practical at higher loop voltages and currents because of self-heating concerns. The external transistor, Q1, conducts the majority of the full-scale output current. Power dissipation in this transistor can approach 0.8 W with high loop voltage (40 V) and 20 mA of output current. The XTR11x is designed to use an external transistor to avoid on-chip, thermal-induced errors. Heat produced by Q1 still causes ambient temperature changes that can affect the XTR11x. To minimize these effects, locate Q1 away from sensitive analog circuitry, including the XTR11x. Mount Q1 so that heat is conducted to the outside of the transducer housing and away from the XTR11x. The XTR11x is designed to use virtually any NPN transistor with sufficient voltage, current, and power rating. Case style and thermal mounting considerations often influence the choice for any given application. Several possible choices are listed in . A MOSFET transistor does not improve the accuracy of the XTR11x and is not recommended. Although the XTR11x can be used without an additional external transistor, this configuration is not always practical at higher loop voltages and currents because of self-heating concerns. The external transistor, Q1, conducts the majority of the full-scale output current. Power dissipation in this transistor can approach 0.8 W with high loop voltage (40 V) and 20 mA of output current. The XTR11x is designed to use an external transistor to avoid on-chip, thermal-induced errors. Heat produced by Q1 still causes ambient temperature changes that can affect the XTR11x. To minimize these effects, locate Q1 away from sensitive analog circuitry, including the XTR11x. Mount Q1 so that heat is conducted to the outside of the transducer housing and away from the XTR11x.1111The XTR11x is designed to use virtually any NPN transistor with sufficient voltage, current, and power rating. Case style and thermal mounting considerations often influence the choice for any given application. Several possible choices are listed in . A MOSFET transistor does not improve the accuracy of the XTR11x and is not recommended. Although the XTR11x can be used without an additional external transistor, this configuration is not always practical at higher loop voltages and currents because of self-heating concerns. Minimum Scale Current The quiescent current of the XTR11x (typically 200 μA) is the lower limit of the device output current. Zero input current (IIN = 0 A) produces an IO equal to the quiescent current. Output current does not begin to increase until IIN > IQ / 100. Current drawn from VREF or VREG adds to this minimum output current. This means that more than 3.7 mA is available to power external circuitry while still allowing the output current to go below 4 mA. Minimum Scale Current The quiescent current of the XTR11x (typically 200 μA) is the lower limit of the device output current. Zero input current (IIN = 0 A) produces an IO equal to the quiescent current. Output current does not begin to increase until IIN > IQ / 100. Current drawn from VREF or VREG adds to this minimum output current. This means that more than 3.7 mA is available to power external circuitry while still allowing the output current to go below 4 mA. The quiescent current of the XTR11x (typically 200 μA) is the lower limit of the device output current. Zero input current (IIN = 0 A) produces an IO equal to the quiescent current. Output current does not begin to increase until IIN > IQ / 100. Current drawn from VREF or VREG adds to this minimum output current. This means that more than 3.7 mA is available to power external circuitry while still allowing the output current to go below 4 mA. The quiescent current of the XTR11x (typically 200 μA) is the lower limit of the device output current. Zero input current (IIN = 0 A) produces an IO equal to the quiescent current. Output current does not begin to increase until IIN > IQ / 100. Current drawn from VREF or VREG adds to this minimum output current. This means that more than 3.7 mA is available to power external circuitry while still allowing the output current to go below 4 mA.INOINQREFREG Offsetting the Input A low scale of 4 mA is produced by creating a 40-μA input current. This low-scale offset can be created with the proper value resistor from VREF (as shown in , or by generating offset in the input drive circuitry. Creating Low-Scale Offset Offsetting the Input A low scale of 4 mA is produced by creating a 40-μA input current. This low-scale offset can be created with the proper value resistor from VREF (as shown in , or by generating offset in the input drive circuitry. Creating Low-Scale Offset A low scale of 4 mA is produced by creating a 40-μA input current. This low-scale offset can be created with the proper value resistor from VREF (as shown in , or by generating offset in the input drive circuitry. Creating Low-Scale Offset A low scale of 4 mA is produced by creating a 40-μA input current. This low-scale offset can be created with the proper value resistor from VREF (as shown in , or by generating offset in the input drive circuitry.REF Creating Low-Scale Offset Creating Low-Scale Offset Maximum Output Current The XTR11x provide accurate, linear output up to 25 mA. Internal circuitry limits the output current to approximately 32 mA to protect the transmitter and loop power or measurement circuitry. Extending the output current range of the XTR11x is possible by connecting an external resistor from pin 3 to pin 5 to change the current limit value. All output current must flow through internal resistors; therefore, damage is possible with excessive current. Output currents greater than 45 mA can cause permanent damage. Digital Control Methods Maximum Output Current The XTR11x provide accurate, linear output up to 25 mA. Internal circuitry limits the output current to approximately 32 mA to protect the transmitter and loop power or measurement circuitry. Extending the output current range of the XTR11x is possible by connecting an external resistor from pin 3 to pin 5 to change the current limit value. All output current must flow through internal resistors; therefore, damage is possible with excessive current. Output currents greater than 45 mA can cause permanent damage. Digital Control Methods The XTR11x provide accurate, linear output up to 25 mA. Internal circuitry limits the output current to approximately 32 mA to protect the transmitter and loop power or measurement circuitry. Extending the output current range of the XTR11x is possible by connecting an external resistor from pin 3 to pin 5 to change the current limit value. All output current must flow through internal resistors; therefore, damage is possible with excessive current. Output currents greater than 45 mA can cause permanent damage. Digital Control Methods The XTR11x provide accurate, linear output up to 25 mA. Internal circuitry limits the output current to approximately 32 mA to protect the transmitter and loop power or measurement circuitry. Extending the output current range of the XTR11x is possible by connecting an external resistor from pin 3 to pin 5 to change the current limit value. All output current must flow through internal resistors; therefore, damage is possible with excessive current. Output currents greater than 45 mA can cause permanent damage. Digital Control Methods Digital Control Methods Radio Frequency Interference The long wire lengths of current loops invite radio frequency interference (RF). RF can be rectified by the input circuitry of the XTR11x or preceding circuitry. This RF generally appears as an unstable output current that varies with the position of loop supply or input wiring. Interference can also enter at the input pins. For integrated transmitter assemblies with short connection to the sensor, the interference more likely comes from the current-loop connections. Radio Frequency Interference The long wire lengths of current loops invite radio frequency interference (RF). RF can be rectified by the input circuitry of the XTR11x or preceding circuitry. This RF generally appears as an unstable output current that varies with the position of loop supply or input wiring. Interference can also enter at the input pins. For integrated transmitter assemblies with short connection to the sensor, the interference more likely comes from the current-loop connections. The long wire lengths of current loops invite radio frequency interference (RF). RF can be rectified by the input circuitry of the XTR11x or preceding circuitry. This RF generally appears as an unstable output current that varies with the position of loop supply or input wiring. Interference can also enter at the input pins. For integrated transmitter assemblies with short connection to the sensor, the interference more likely comes from the current-loop connections. The long wire lengths of current loops invite radio frequency interference (RF). RF can be rectified by the input circuitry of the XTR11x or preceding circuitry. This RF generally appears as an unstable output current that varies with the position of loop supply or input wiring. Interference can also enter at the input pins. For integrated transmitter assemblies with short connection to the sensor, the interference more likely comes from the current-loop connections. Circuit Stability B Added Circuit Stability application information section yes The 4-20 mA control-loop stability must be evaluated for any XTR11x design. A 10‑nF decoupling capacitor between V+ and IO is recommended for most applications. As this capacitance appears in parallel with the load resistance RLOAD from a stability perspective, the capacitor and resistor form a filter corner that can limit the bandwidth of the system. Therefore, for HART applications, use a bypass capacitance of 2 nF to 3 nF instead. For applications with EMI and EMC concerns, use a bypass capacitor with sufficiently low ESR to decouple any ripple voltage from the VLOOP supply. Otherwise, the ripple voltage couples onto the 4‑mA to 20‑mA current source, and appears as noise across RLOAD after the current-to-voltage conversion. Additionally, stability concerns apply to the VREF reference buffer when driving capacitive loads. shows that two filtering capacitors are required, one CHF of 10 pF to 0.5 µF and another CLF of 2.2 µF to 22 µF. Either a series isolation resistance RISO or a snubber RCOMP is used, depending on application requirements. Stable Operation With Capacitive Load on VREF (1) Required compensation components. Circuit Stability B Added Circuit Stability application information section yes B Added Circuit Stability application information section yes B Added Circuit Stability application information section yes BAdded Circuit Stability application information sectionCircuit Stabilityyes The 4-20 mA control-loop stability must be evaluated for any XTR11x design. A 10‑nF decoupling capacitor between V+ and IO is recommended for most applications. As this capacitance appears in parallel with the load resistance RLOAD from a stability perspective, the capacitor and resistor form a filter corner that can limit the bandwidth of the system. Therefore, for HART applications, use a bypass capacitance of 2 nF to 3 nF instead. For applications with EMI and EMC concerns, use a bypass capacitor with sufficiently low ESR to decouple any ripple voltage from the VLOOP supply. Otherwise, the ripple voltage couples onto the 4‑mA to 20‑mA current source, and appears as noise across RLOAD after the current-to-voltage conversion. Additionally, stability concerns apply to the VREF reference buffer when driving capacitive loads. shows that two filtering capacitors are required, one CHF of 10 pF to 0.5 µF and another CLF of 2.2 µF to 22 µF. Either a series isolation resistance RISO or a snubber RCOMP is used, depending on application requirements. Stable Operation With Capacitive Load on VREF (1) Required compensation components. The 4-20 mA control-loop stability must be evaluated for any XTR11x design. A 10‑nF decoupling capacitor between V+ and IO is recommended for most applications. As this capacitance appears in parallel with the load resistance RLOAD from a stability perspective, the capacitor and resistor form a filter corner that can limit the bandwidth of the system. Therefore, for HART applications, use a bypass capacitance of 2 nF to 3 nF instead. For applications with EMI and EMC concerns, use a bypass capacitor with sufficiently low ESR to decouple any ripple voltage from the VLOOP supply. Otherwise, the ripple voltage couples onto the 4‑mA to 20‑mA current source, and appears as noise across RLOAD after the current-to-voltage conversion. Additionally, stability concerns apply to the VREF reference buffer when driving capacitive loads. shows that two filtering capacitors are required, one CHF of 10 pF to 0.5 µF and another CLF of 2.2 µF to 22 µF. Either a series isolation resistance RISO or a snubber RCOMP is used, depending on application requirements. Stable Operation With Capacitive Load on VREF (1) Required compensation components. The 4-20 mA control-loop stability must be evaluated for any XTR11x design. A 10‑nF decoupling capacitor between V+ and IO is recommended for most applications. As this capacitance appears in parallel with the load resistance RLOAD from a stability perspective, the capacitor and resistor form a filter corner that can limit the bandwidth of the system. Therefore, for HART applications, use a bypass capacitance of 2 nF to 3 nF instead.OLOADFor applications with EMI and EMC concerns, use a bypass capacitor with sufficiently low ESR to decouple any ripple voltage from the VLOOP supply. Otherwise, the ripple voltage couples onto the 4‑mA to 20‑mA current source, and appears as noise across RLOAD after the current-to-voltage conversion.LOOPLOADAdditionally, stability concerns apply to the VREF reference buffer when driving capacitive loads. shows that two filtering capacitors are required, one CHF of 10 pF to 0.5 µF and another CLF of 2.2 µF to 22 µF. Either a series isolation resistance RISO or a snubber RCOMP is used, depending on application requirements.REFHFLFISOCOMP Stable Operation With Capacitive Load on VREF (1) Required compensation components. Stable Operation With Capacitive Load on VREF REF(1) Required compensation components. Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. Device Support Documentation Support Related Documentation For related documentation see the following: Texas Instruments, Special Function Amplifiers: TI Precision Labs introduction video on Current Loop Transmitters Texas Instruments, TIPD190 2-wire, 4-20mA Transmitter, EMC/EMI Tested Reference Design with the XTR116 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 支持资源 TI E2E 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 Trademarks 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. Device Support Device Support Documentation Support Related Documentation For related documentation see the following: Texas Instruments, Special Function Amplifiers: TI Precision Labs introduction video on Current Loop Transmitters Texas Instruments, TIPD190 2-wire, 4-20mA Transmitter, EMC/EMI Tested Reference Design with the XTR116 Documentation Support Related Documentation For related documentation see the following: Texas Instruments, Special Function Amplifiers: TI Precision Labs introduction video on Current Loop Transmitters Texas Instruments, TIPD190 2-wire, 4-20mA Transmitter, EMC/EMI Tested Reference Design with the XTR116 Related Documentation For related documentation see the following: Texas Instruments, Special Function Amplifiers: TI Precision Labs introduction video on Current Loop Transmitters Texas Instruments, TIPD190 2-wire, 4-20mA Transmitter, EMC/EMI Tested Reference Design with the XTR116 For related documentation see the following: Texas Instruments, Special Function Amplifiers: TI Precision Labs introduction video on Current Loop Transmitters Texas Instruments, TIPD190 2-wire, 4-20mA Transmitter, EMC/EMI Tested Reference Design with the XTR116 For related documentation see the following: Texas Instruments, Special Function Amplifiers: TI Precision Labs introduction video on Current Loop Transmitters Texas Instruments, TIPD190 2-wire, 4-20mA Transmitter, EMC/EMI Tested Reference Design with the XTR116 Texas Instruments, Special Function Amplifiers: TI Precision Labs introduction video on Current Loop Transmitters Texas Instruments, TIPD190 2-wire, 4-20mA Transmitter, EMC/EMI Tested Reference Design with the XTR116 Texas Instruments, Special Function Amplifiers: TI Precision Labs introduction video on Current Loop Transmitters Special Function Amplifiers: TI Precision Labs introduction video on Current Loop TransmittersSpecial Function AmplifiersTexas Instruments, TIPD190 2-wire, 4-20mA Transmitter, EMC/EMI Tested Reference Design with the XTR116 TIPD190 2-wire, 4-20mA Transmitter, EMC/EMI Tested Reference DesignTIPD190 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。ti.com订阅更新 支持资源 TI E2E 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 支持资源 TI E2E 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 TI E2E 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。 TI E2E 支持论坛TI E2E链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。《使用条款》 Trademarks Trademarks 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 TI 术语表 TI 术语表本术语表列出并解释了术语、首字母缩略词和定义。 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 重要声明和免责声明 TI“按原样”提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2023,德州仪器 (TI) 公司 重要声明和免责声明 TI“按原样”提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2023,德州仪器 (TI) 公司 TI“按原样”提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE TI“按原样”提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE TI“按原样”提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE TI“按原样”提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 TI“按原样”提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。TI 的销售条款ti.com TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE IMPORTANT NOTICE 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2023,德州仪器 (TI) 公司 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2023,德州仪器 (TI) 公司 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2023,德州仪器 (TI) 公司 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2023,德州仪器 (TI) 公司 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2023,德州仪器 (TI) 公司 Copyright © 2023,德州仪器 (TI) 公司.
Figure 8-1 Basic Circuit Connections

The XTR11x is a current-input device with a gain of 100. A current flowing into pin 2 produces IO = 100 • IIN. The input voltage at the IIN pin is zero (referred to the IRET pin). A voltage input is created with an external input resistor, as shown. Common full-scale input voltages range from 1 V and upward. Full-scale inputs greater than 0.5 V are recommended to minimize the effect of offset voltage and drift of A1.