ZHCSIH9F March   2009  – July 2018 TPS65023-Q1

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化原理图
  4. 修订历史记录
  5. 说明 (续)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Step-Down Converters, VDCDC1, VDCDC2, and VDCDC3
      2. 8.3.2 Soft Start
      3. 8.3.3 Active Discharge When Disabled
      4. 8.3.4 Power-Good Monitoring
      5. 8.3.5 Low-Dropout Voltage Regulators
      6. 8.3.6 Undervoltage Lockout
    4. 8.4 Device Functional Modes
      1. 8.4.1 VRTC Output and Operation With or Without Backup Battery
      2. 8.4.2 Power-Save Mode Operation (PSM)
      3. 8.4.3 Low-Ripple Mode
      4. 8.4.4 100% Duty-Cycle Low-Dropout Operation
      5. 8.4.5 System Reset and Control Signals
        1. 8.4.5.1 DEFLDO1 and DEFLDO2
        2. 8.4.5.2 Interrupt Management and the INT Pin
    5. 8.5 Programming
      1. 8.5.1 Power-Up Sequencing
      2. 8.5.2 Serial Interface
    6. 8.6 Register Maps
      1. 8.6.1 VERSION Register (address: 00h) Read-Only
      2. 8.6.2 PGOODZ Register (address: 01h) Read-Only
        1. Table 5. PGOODZ Register Field Descriptions
      3. 8.6.3 MASK Register (address: 02h)
      4. 8.6.4 REG_CTRL Register (address: 03h)
        1. Table 6. REG_CTRL Register Field Descriptions
      5. 8.6.5 CON_CTRL Register (address: 04h)
        1. Table 7. CON_CTRL Register Field Descriptions
      6. 8.6.6 CON_CTRL2 Register (address: 05h)
        1. Table 8. CON_CTRL2 Register Field Descriptions
      7. 8.6.7 DEFCORE Register (address: 06h)
        1. Table 9. DEFCORE Register Field Descriptions
      8. 8.6.8 DEFSLEW Register (address: 07h)
        1. Table 10. DEFSLEW Register Field Descriptions
      9. 8.6.9 LDO_CTRL Register (address: 08h)
        1. Table 11. LDO_CTRL Register Field Descriptions
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Reset Condition of DCDC1
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection for the DC-DC Converters
        2. 9.2.2.2 Output Capacitor Selection
        3. 9.2.2.3 Input Capacitor Selection
        4. 9.2.2.4 Output Voltage Selection
        5. 9.2.2.5 VRTC Output
        6. 9.2.2.6 LDO1 and LDO2
        7. 9.2.2.7 TRESPWRON
        8. 9.2.2.8 VCC Filter
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 第三方产品免责声明
    2. 12.2 文档支持
      1. 12.2.1 相关文档
    3. 12.3 接收文档更新通知
    4. 12.4 社区资源
    5. 12.5 商标
    6. 12.6 静电放电警告
    7. 12.7 术语表
  13. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

CON_CTRL Register (address: 04h)

Figure 37. CON_CTRL Register Fields
7 6 5 4 3 2 1 0
DCDC2 PHASE1 DCDC2 PHASE0 DCDC3 PHASE1 DCDC3 PHASE0 LOW RIPPLE FPWM DCDC2 FPW DCDC1 FPWM DCDC3
R/W-1 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

The CON_CTRL register is used to force any or all of the converters into forced PWM operation when low output-voltage ripple is vital. It is also used to control the phase shift between the three converters to minimize the input rms current, hence reduce the required input blocking capacitance. The DCDC1 converter is taken as the reference and consequently has a fixed-zero phase shift.

Table 7. CON_CTRL Register Field Descriptions

Bit Field Type Reset Description
7–6 DCDC2 PHASE1, PHASE0 R/W 10

DCDC2 Converter delay is set by these bits.

00 = Zero

01 = 1/4 cycle

10 = 1/2 cycle

11 = 3/4 cycle

5–4 DCDC3 PHASE1, PHASE0 R/W 11

DCDC3 Converter delay is set by these bits.

00 = Zero

01 = 1/4 cycle

10 = 1/2 cycle

11 = 3/4 cycle

3 LOW RIPPLE: R/W 0

0 = PFM mode operation optimized for high efficiency for all converters

1 = PFM mode operation optimized for low output-voltage ripple for all converters

2 FPWM DCDC2: R/W 0

0 = DCDC2 converter operates in PWM or PFM mode

1 = DCDC2 converter is forced into fixed-frequency PWM mode.

1 FPWM DCDC1: R/W 0

0 = DCDC1 converter operates in PWM or PFM mode

1 = DCDC1 converter is forced into fixed-frequency PWM mode.

0 FPWM DCDC3: R/W 0

0 = DCDC3 converter operates in PWM or PFM mode

1 = DCDC3 converter is forced into fixed-frequency PWM mode.