ZHCSFW3 November   2016 TPL0401A-10-Q1 , TPL0401B-10-Q1

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
    4. 9.4 Device Functional Modes
      1. 9.4.1 Voltage Divider Mode
    5. 9.5 Programming
      1. 9.5.1 I2C General Operation and Overview
        1. 9.5.1.1 START and STOP Conditions
        2. 9.5.1.2 Data Validity and Byte Formation
        3. 9.5.1.3 Acknowledge (ACK) and Not Acknowledge (NACK)
        4. 9.5.1.4 Repeated Start
      2. 9.5.2 Programing With I2C
        1. 9.5.2.1 Write Operation
        2. 9.5.2.2 Read Operation
    6. 9.6 Register Maps
      1. 9.6.1 Slave Address
      2. 9.6.2 Register Address
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
    1. 11.1 Power Sequence
    2. 11.2 Power-On Reset Requirements
    3. 11.3 I2C Communication After Power Up
    4. 11.4 Wiper Position While Unpowered and After Power Up
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13器件和文档支持
    1. 13.1 文档支持
      1. 13.1.1 相关文档 
    2. 13.2 相关链接
    3. 13.3 接收文档更新通知
    4. 13.4 社区资源
    5. 13.5 商标
    6. 13.6 静电放电警告
    7. 13.7 Glossary
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
VDD Supply voltage VDD to GND –0.3 7 V
IH, IL, IW Continuous current ±5 mA
VI Digital input pins (SDA, SCL) –0.3 VDD + 0.3 V
Potentiometer pins (H, W) –0.3 VDD + 0.3
TJ(MAX) Maximum junction temperature 130 °C
Tstg Storage temperature –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2500 V
Charged-device model (CDM), per AEC Q100-011 ±1000
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VDD Supply voltage 2.7 5.5 V
VW,VH, SDA, SCL Terminal voltage 0 VDD V
VIH Voltage input high ( SCL, SDA ) 0.7 × VDD VDD V
VIL Voltage input low ( SCL, SDA ) 0 0.3 × VDD V
IW Wiper current –2 2 mA
TA Ambient operating temperature –40 125 °C

Thermal Information

THERMAL METRIC(1) TPL0401x-10-Q1 UNIT
DCK (SC70)
6 PINS
RθJA Junction-to-ambient thermal resistance 234 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 110.5 °C/W
RθJB Junction-to-board thermal resistance 79 °C/W
ψJT Junction-to-top characterization parameter 7.2 °C/W
ψJB Junction-to-board characterization parameter 77 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

Typical values are specified at 25°C and VDD = 3.3 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RTOTAL End-to-end resistance 8 10 12
RH Terminal resistance 100 200 Ω
RW Wiper resistance 35 100 Ω
CH Terminal capacitance 10 pF
CW Wiper capacitance 11 pF
TCR Resistance temperature coefficient 22 ppm/°C
IDD(STBY) VDD standby current –40°C to +105°C 0.5 µA
–40°C to +125°C 1.5
IIN-DIG Digital pins leakage current (SCL, SDA Inputs) –2.5 2.5 µA
SERIAL INTERFACE SPECS (SDA, SCL)
VIH Input high voltage 0.7 × VDD VDD V
VIL Input low voltage 0 0.3 × VDD V
VOL Output low voltage SDA Pin, IOL = 4 mA 0.4 V
CIN Pin capacitance SCL, SDA Inputs 7 pF
VOLTAGE DIVIDER MODE (VH = VDD, VW = Not Loaded)
INL(3)(1) Integral non-linearity –0.5 0.5 LSB
DNL(4)(1) Differential non-linearity –0.25 0.25 LSB
ZSERROR(5)(2) Zero-scale error 0 0.75 1.5 LSB
FSERROR(6)(2) Full-scale error –1.5 –0.75 0 LSB
TCV Ratiometric temperature coefficient Wiper set at mid-scale 4 ppm/°C
BW Bandwidth Wiper set at mid-scale,
CLOAD = 10 pF
2862 kHz
TSW Wiper settling time See Figure 10 0.152 µs
THD+N Total harmonic distortion VH = 1 VRMS at 1 kHz,
measurement at W
0.03 %
RHEOSTAT MODE (VH = VDD, VW = Not Loaded)
RINL(9)(7) Rheostat mode integral non-linearity –1 1 LSB
RDNL(10)(7) Rheostat mode differential non-linearity 0.5 0.5 LSB
ROFFSET(11)(8) Rheostat-mode zero-scale error 0 0.75 2 LSB
LSB = (VMEAS[code 127] – VMEAS[code 0]) / 127
IDEAL_LSB = VH/ 128
INL = ((VMEAS[code x] – VMEAS[code 0]) / LSB) – [code x]
DNL = ((VMEAS[code x] – VMEAS[code x-1]) / LSB) – 1
ZSERROR = VMEAS[code 0] / IDEAL_LSB
FSERROR = [(VMEAS[code 127] – VH) / IDEAL_LSB] + 1
RLSB = (RMEAS[code 127] – RMEAS[code 0]) / 127
IDEAL_RLSB = RTOT / 128
RINL = ( (RMEAS[code x] – RMEAS[code 0]) / RLSB) – [code x]
RDNL = ( (RMEAS[code x] – RMEAS[code x–1]) / RLSB ) – 1
ROFFSET = RMEAS[code 0] / IDEAL_RLSB

Timing Requirements

MIN MAX UNIT
STANDARD MODE
fSCL I2C Clock frequency 0 100 kHz
tSCH I2C Clock high time 4 µs
tSCL I2C Clock low time 4.7 µs
tsp I2C Spike time 0 50 ns
tSDS I2C Serial data setup time 250 ns
tSDH I2C Serial data hold time 0 ns
tICR I2C Input rise time 1000 ns
tICF I2C Input fall time 300 ns
tOCF I2C Output fall time, 10 pF to 400 pF bus 300 ns
tBUF I2C Bus free time between stop and start 4.7 µs
tSTS I2C Start or repeater start condition setup time 4.7 µs
tSTH I2C Start or repeater start condition hold time 4 µs
tSPS I2C Stop condition setup time 4 µs
tVD(DATA) Valid data time, SCL low to SDA output valid 1 µs
tVD(ACK) Valid data time of ACK condition, ACK signal from SCL low to SDA (out) low 1 µs
FAST MODE
fSCL I2C Clock frequency 0 400 kHz
tSCH I2C Clock high time 0.6 µs
tSCL I2C Clock low time 1.3 µs
tsp I2C Spike time 0 50 ns
tSDS I2C Serial data setup time 100 ns
tSDH I2C Serial data hold time 0 ns
tICR I2C Input rise time 20 300 ns
tICF I2C Input fall time 20 × (VDD / 5.5) 300 ns
tOCF I2C Output fall time, 10 pF to 400 pF bus (VDD / 5.5) × 20 300 ns
tBUF I2C Bus free time between stop and start 1.3 µs
tSTS I2C Start or repeater start condition setup time 1.3 µs
tSTH I2C Start or repeater start condition hold time 0.6 µs
tSPS I2C Stop condition setup time 0.6 µs
tVD(DATA) Valid data time, SCL low to SDA output valid 1 µs
tVD(ACK) Valid data time of ACK condition, ACK signal from SCL low to SDA (out) low 1 µs

Typical Characteristics

TPL0401A-10-Q1 TPL0401B-10-Q1 D001_SLIS182.gif
Figure 1. INL vs Tap Position (Potentiometer Mode)
TPL0401A-10-Q1 TPL0401B-10-Q1 D003_SLIS182.gif
Figure 3. INL vs Tap Position (Rheostat Mode)
TPL0401A-10-Q1 TPL0401B-10-Q1 D005_SLIS182.gif
Figure 5. End-to-End RTOTAL Change vs Temperature
TPL0401A-10-Q1 TPL0401B-10-Q1 D007_SLIS182.gif
Figure 7. Temperature Coefficient vs TAP Position (Rheostat Mode)
TPL0401A-10-Q1 TPL0401B-10-Q1 D002_SLIS182.gif
Figure 2. DNL vs Tap Position (Potentiometer Mode)
TPL0401A-10-Q1 TPL0401B-10-Q1 D004_SLIS182.gif
Figure 4. Full Scale Error vs Temperature
TPL0401A-10-Q1 TPL0401B-10-Q1 D006_SLIS182.gif
Figure 6. Temperature Coefficient vs TAP Position (Potentiometer Mode)
TPL0401A-10-Q1 TPL0401B-10-Q1 D008_SLIS182.gif
Figure 8. Frequency Response