ZHCSF35A October   2014  – June 2016 PGA300

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - Reverse Voltage Protection
    6. 6.6  Electrical Characteristics - Regulators
    7. 6.7  Electrical Characteristics - Internal Reference
    8. 6.8  Electrical Characteristics - Bridge Sensor Supply
    9. 6.9  Electrical Characteristics - Temperature Sensor Supply
    10. 6.10 Electrical Characteristics - Internal Temperature Sensor
    11. 6.11 Electrical Characteristics - P Gain (Chopper Stabilized)
    12. 6.12 Electrical Characteristics - P Analog-to-Digital Converter
    13. 6.13 Electrical Characteristics - T Gain (Chopper Stabilized)
    14. 6.14 Electrical Characteristics - T Analog-to-Digital Converter
    15. 6.15 Electrical Characteristics - One-Wire Interface
    16. 6.16 Electrical Characteristics - DAC Output
    17. 6.17 Electrical Characteristics - DAC Gain
    18. 6.18 Electrical Characteristics - Non-Volatile Memory
    19. 6.19 Electrical Characteristics - Diagnostics
    20. 6.20 Operating Characteristics
    21. 6.21 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Reverse-Voltage Protection Block
      2. 7.3.2  Linear Regulators
      3. 7.3.3  Internal Reference
        1. 7.3.3.1 High-Voltage Reference
        2. 7.3.3.2 Accurate Reference
      4. 7.3.4  BRG+ to BRG- Supply for the Resistive Bridge
      5. 7.3.5  ITEMP Supply for the Temperature Sensor
      6. 7.3.6  Internal Temperature Sensor
      7. 7.3.7  P Gain
      8. 7.3.8  P Analog-to-Digital Converter
        1. 7.3.8.1 P Sigma-Delta Modulator for P ADC
        2. 7.3.8.2 P Decimation Filter for P ADC
      9. 7.3.9  T Gain
      10. 7.3.10 T Analog-to-Digital Converter
        1. 7.3.10.1 T Sigma-Delta Modulator for T ADC
        2. 7.3.10.2 T Decimation Filters for T ADC
      11. 7.3.11 P GAIN and T GAIN Calibration
      12. 7.3.12 One-Wire Interface (OWI)
        1. 7.3.12.1 Overview of OWI
        2. 7.3.12.2 Activating and Deactivating the OWI Interface
          1. 7.3.12.2.1 Activating OWI Communication
          2. 7.3.12.2.2 Deactivating OWI Communication
        3. 7.3.12.3 OWI Protocol
          1. 7.3.12.3.1 OWI Frame Structure
            1. 7.3.12.3.1.1 Standard Field Structure
            2. 7.3.12.3.1.2 Frame Structure
            3. 7.3.12.3.1.3 Sync Field
            4. 7.3.12.3.1.4 Command Field
            5. 7.3.12.3.1.5 Data Fields
          2. 7.3.12.3.2 OWI Commands
            1. 7.3.12.3.2.1 OWI Write Command
            2. 7.3.12.3.2.2 OWI Read Initialization Command
            3. 7.3.12.3.2.3 OWI Read-Response Command
            4. 7.3.12.3.2.4 OWI Burst-Write Command (EEPROM Cache Access)
            5. 7.3.12.3.2.5 OWI Burst Read Command (EEPROM Cache Access)
          3. 7.3.12.3.3 OWI Operations
            1. 7.3.12.3.3.1 Write Operation
            2. 7.3.12.3.3.2 Read Operation
            3. 7.3.12.3.3.3 EEPROM Burst Write
            4. 7.3.12.3.3.4 EEPROM Burst Read
        4. 7.3.12.4 OWI Communication-Error Status
      13. 7.3.13 DAC Output
        1. 7.3.13.1 Ratiometric vs Absolute
      14. 7.3.14 DAC Gain
      15. 7.3.15 Memory
        1. 7.3.15.1 EEPROM Memory
          1. 7.3.15.1.1 EEPROM Cache
          2. 7.3.15.1.2 EEPROM Programming Procedure
          3. 7.3.15.1.3 EEPROM Programming Current
          4. 7.3.15.1.4 CRC
        2. 7.3.15.2 Control and Status Registers Memory
      16. 7.3.16 Diagnostics
        1. 7.3.16.1 Power Supply Diagnostics
        2. 7.3.16.2 Signal Chain Faults
          1. 7.3.16.2.1 P Gain and T Gain Input Faults
          2. 7.3.16.2.2 P Gain and T Gain Output Diagnostics
          3. 7.3.16.2.3 Masking Signal Chain Faults
          4. 7.3.16.2.4 Fault Detection Timing
      17. 7.3.17 Digital Compensation and Filter
        1. 7.3.17.1 Digital Gain and Offset
        2. 7.3.17.2 TC and NL Correction
          1. 7.3.17.2.1 TC and NL Coefficients
            1. 7.3.17.2.1.1 No TC and NL Coefficients
          2. 7.3.17.2.2 TC Compensation Using the Internal Temperature Sensor
        3. 7.3.17.3 Clamping
        4. 7.3.17.4 Filter
      18. 7.3.18 Filter Coefficients
        1. 7.3.18.1 No Filtering
        2. 7.3.18.2 Filter Coefficients for P ADC Sampling Rate = 128 µs
    4. 7.4 Device Functional Modes
      1. 7.4.1 Voltage Mode
      2. 7.4.2 Current Mode
    5. 7.5 Register Maps
      1. 7.5.1 Register Settings
      2. 7.5.2 Control and Status Registers
        1. 7.5.2.1  DAC_CONFIG
        2. 7.5.2.2  OP_STAGE_CTRL
        3. 7.5.2.3  BRDG_CTRL
        4. 7.5.2.4  P_GAIN_SELECT
        5. 7.5.2.5  T_GAIN_SELECT
        6. 7.5.2.6  TEMP_CTRL
        7. 7.5.2.7  TEMP_SE
        8. 7.5.2.8  DIAG_ENABLE
        9. 7.5.2.9  AFEDIAG_CFG
        10. 7.5.2.10 AFEDIAG_MASK
        11. 7.5.2.11 COMPENSATION_CONTROL
        12. 7.5.2.12 EEPROM_LOCK
        13. 7.5.2.13 EEPROM_PAGE_ADDRESS
        14. 7.5.2.14 EEPROM_CTRL
        15. 7.5.2.15 EEPROM_CRC
        16. 7.5.2.16 EEPROM_STATUS
        17. 7.5.2.17 EEPROM_CRC_STATUS
        18. 7.5.2.18 EEPROM_CRC_VALUE
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 4-mA to 20-mA Output With Internal Sense Resistor
        1. 8.1.1.1 Design Requirements
        2. 8.1.1.2 Detailed Design Procedure
          1. 8.1.1.2.1 Calibration Tips
            1. 8.1.1.2.1.1 Programming the EEPROM for 4-mA to 20-mA Output
        3. 8.1.1.3 Application Curve
      2. 8.1.2 0- to 10-V Absolute Output With Internal Drive
        1. 8.1.2.1 Design Requirements
        2. 8.1.2.2 Detailed Design Procedure
          1. 8.1.2.2.1 Programmer Tips
            1. 8.1.2.2.1.1 Resetting the Microprocessor and Enable Digital Interface
            2. 8.1.2.2.1.2 Turning On the Accurate Reference Buffer (REFCAP Voltage)
            3. 8.1.2.2.1.3 Turning On DAC and DAC GAIN
      3. 8.1.3 0- to 5-V Ratiometric Output With Internal Drive
        1. 8.1.3.1 Design Requirements
        2. 8.1.3.2 Detailed Design Procedure
          1. 8.1.3.2.1 Programmer Tips
            1. 8.1.3.2.1.1 Resetting the Microprocessor and Enable Digital Interface
            2. 8.1.3.2.1.2 Turning On the Accurate Reference Buffer (REFCAP Voltage)
            3. 8.1.3.2.1.3 Turning On DAC and DAC GAIN
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 商标
    2. 11.2 静电放电警告
    3. 11.3 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

see (1)
MIN MAX UNIT
PWR Supply voltage –28 33 V
Voltage at sensor input pins: INP+, INP–, INT+, INT– –0.3 2 V
Voltage at AVDD, AVSS, BRG+, BRG–, COMP, DACCAP, DVDD, DVDD_MEM, DVSS, FB–, GATE, REFCAP –0.3 3.6 V
Voltage at FB+ pin –2 VPWR + 0.3 V
Voltage at OUT pin -0.3 33 V
IPWR, short on OUT pin Supply current 25 mA
TJmax Maximum junction temperature 155 °C
Tstg Storage temperature –40 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VPWR Power supply voltage 3.3 30 V
Slew rate VDD = 0 to 30 V 0.5 V/µs
IPWR Power supply current - normal operation No load on BRG, no load on DAC 2.5 mA mA
Power supply current - EEPROM programming While EEPROM is being programmed, no load on BRG, no load on DAC 9(1)
TA Operating ambient temperature –40 150 °C
Programming temperature EEPROM –40 140 °C
Start-up time (including analog and digital) VPWR ramp rate 0.5 V/µs 1 ms
Capacitor on PWR pin 10 nF
(1) Programming of the EEPROM results in an additional 6 mA of current on the PWR pin.

6.4 Thermal Information

THERMAL METRIC(1) PGA300 UNIT
RHH (VQFN)
36 PINS
RθJA Junction-to-ambient thermal resistance 30.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 16.4 °C/W
RθJB Junction-to-board thermal resistance 5.4 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 5.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.7 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics – Reverse Voltage Protection

over operating ambient temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Reverse voltage –28 V
Voltage drop across reverse voltage protection element 20 mV

6.6 Electrical Characteristics – Regulators

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VAVDD AVDD voltage CAVDD = 100 nF 3 V
VDVDD DVDD voltage – operating CDVDD = 100 nF 1.8 V

6.7 Electrical Characteristics – Internal Reference

over operating ambient temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
High-voltage reference voltage(1) 1.2 V
Accurate reference voltage 2.5 V
Capacitor value on REFCAP pin 100 nF
(1) TEMP_DRIFT = [(Value at TEMP – Value at 25³C) / (Value at 25³C × ΔTEMP)] × 106

6.8 Electrical Characteristics – Bridge Sensor Supply

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
BRG SUPPLY FOR RESISTIVE BRIDGE SENSORS
VBRG+ – VBRG– Bridge supply voltage Bridge supply control bit = 0b00, no load 2.5 V
Bridge supply control bit = 0b01, no load 2 V
Bridge supply control bit = 0b10, no load 1.25 V
IBRG Current supply to the bridge 1.5 mA
CBRG Capacitive load RBRG = 20 kΩ 2 nF

6.9 Electrical Characteristics – Temperature Sensor Supply

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ITEMP SUPPLY FOR TEMPERATURE SENSOR
ITEMP Current supply to temperature sensor Control bit = 0b000 25 µA
Control bit = 0b001 50
Control bit = 0b010 100
Control bit = 0b011 500
Control bit = 0b1xx OFF
CTEMP Capacitive load 100 nF
Output impedance 15

6.10 Electrical Characteristics – Internal Temperature Sensor

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Temperature range –40 150 °C

6.11 Electrical Characteristics – P Gain (Chopper Stabilized)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Gain steps (5 bits) 00000, at dc 5 V/V
00001 5.48
00010 5.97
00011 6.56
00100 7.02
00101 8
00110 9.09
00111 10
01000 10.53
01001 11.11
01010 12.5
01011 13.33
01100 14.29
01101 16
01110 17.39
01111 18.18
10000 19.05
10001 20
10010 22.22
10011 25
10100 30.77
10101 36.36
10110 40
10111 44.44
11000 50
11001 57.14
11010 66.67
11011 80
11100 100
11101 133.33
11110 200
11111 400
Gain bandwidth product 10 MHz
Input-referred noise density(1) f = 0.1 Hz to 2 kHz, gain = 400 V/V, sampling rate = 128 µs, across temperature 15 nV/√Hz
Input offset voltage 10 µV
Input bias current 5 nA
Frequency response Gain = 400 V/V, <1 kHz ±0.1 %V/V
Common-mode voltage range Depends on selected gain, bridge supply and sensor span (2) V
Common-mode rejection ratio fCM = 50 Hz at gain = 5 V/V 110 dB
Input impedance 10
(1) Total input-referred noise including gain noise, ADC reference noise, ADC thermal noise, and ADC quantization noise
(2) Common Mode at P Gain Input and Output: There are two constraints:
  1. The single-ended voltage of the positive and negative pins at the P gain input must be between 0.3 V and 1.8 V
  2. The single-ended voltage of the positive and negative pins at the P gain output must be between 0.1 V and 2 V

6.12 Electrical Characteristics – P Analog-to-Digital Converter

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Sigma-delta modulator frequency 1 MHz
ADC voltage input range –2.5 2.5 V
Number of bits 16 bits
ADC 2s complement code for –2.5-V differential input 8000hex
ADC 2s complement code for 0-V differential input 0000hex
ADC 2s complement code for 2.5-V differential input 7FFFhex
INL Integral nonlinearity ±0.5 LSB

6.13 Electrical Characteristics – T Gain (Chopper Stabilized)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Gain steps (2 bits) Gain control bits = 0b00 at dc 1.33 V/V
Gain control bits = 0b01 2
Gain control bits = 0b10 5
Gain control bits = 0b11 20
Gain bandwidth product 350 kHz
Noise density(1) f = 0.1 Hz to 100 Hz
at gain = 5 V/V, across temperature
110 nV/√Hz
Input offset voltage 95 µV
Input bias current 5 nA
Frequency response Gain = 20 V/V, <100 Hz 0.335 %V/V
Common mode voltage range Depends on selected gain and current supply (2)
Common-mode rejection ratio fCM = 50 Hz 110 dB
Input impedance 1
(1) Total input-referred noise including gain noise, ADC reference noise, ADC thermal noise, and ADC quantization noise
(2) Common Mode at T Gain Input and Output: There are two constraints:
  1. The single-ended voltage of positive/negative pin at the T gain input should be between 5 m V and 1.8 V
  2. The single-ended voltage of positive/negative pin at the T gain output should be between 0.1 V and 2 V

6.14 Electrical Characteristics – T Analog-to-Digital Converter

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Sigma-delta modulator frequency 1 MHz
ADC voltage input range –2.5 2.5 V
Number of bits 16 bits
ADC 2s complement code for –2.5-V differential input 2s complement 8000hex LSB
ADC 2s complement code for 0-V differential input 0000hex LSB
ADC 2s complement code for 2.5-V differential input 7FFFhex LSB
INL Integral nonlinearity ±0.5 LSB

6.15 Electrical Characteristics – One-Wire Interface

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Communication Baud Rate(1) 600 9600 bits per second
OWI_ENH OWI activation high 5.95 V
OWI_ENL OWI activation low 5.75 V
OWI_VIH OWI transceiver Rx threshold for high 4.8 5.1 V
OWI_VIL OWI transceiver Rx threshold for low 3.9 4.2 V
OWI_IOH OWI transceiver Tx threshold for high 500 1379 µA
OWI_IOL OWI transceiver Tx threshold for low 2 5 µA
(1) OWI over power line does not work if there is an LDO between the supply to the sensor and the PWR pin, or if the OWI high and low voltages are greater than the regulated voltage.

6.16 Electrical Characteristics – DAC Output

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DAC reference voltage Reference bit = 1 1.25 V
Reference bit = 0 (ratiometric) 0.25 × VPWR
DAC resolution 14 bits

6.17 Electrical Characteristics – DAC Gain

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Buffer gain (see Figure 16) 2 V/V
4
6.67× 6.67
10× 10
Current loop gain 1001 mA/mA
Gain-bandwidth product 1 MHz
Zero-code voltage (gain = 4×) DAC code = 0000h, IDAC = 2.5 mA 20 mV
Full-code voltage (gain = 4×) DAC code is 1FFFh, IDAC = –2.5 mA 4.8 V
Output current DAC code = 1FFFh , DAC code = 0000h ±2.5 mA
Short-circuit source current DAC code = 1FFFh 27 mA
Short-circuit sink current DAC code = 0000h 27 mA
Maximum capacitance Without compensation 100 pF
With compensation 100 nF

6.18 Electrical Characteristics – Non-Volatile Memory

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
EEPROM Size 128 Bytes
Erase-write cycles 1000 Cycles
Programming time 1 8-byte page 8 ms
Data retention 10 Years

6.19 Electrical Characteristics – Diagnostics

over operating ambient temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OSC_PWR_OV Oscillator circuit supply overvoltage threshold 3.3 V
OSC_PWR_UV Oscillator circuit supply undervoltage threshold 2.7 V
BRG_OV Resistive bridge sensor supply overvoltage threshold 10 %. VBRG
BRG_UV Resistive bridge sensor supply undervoltage threshold –10 %Prog. VBRG
AVDD_OV AVDD overvoltage threshold 3.3 V
AVDD_UV AVDD undervoltage threshold 2.7 V
DVDD_OV DVDD overvoltage threshold 2 V
DVDD_UV DVDD undervoltage threshold 1.53 V
REF_OV Reference overvoltage threshold 2.75 V
REF_UV Reference undervoltage threshold 2.25 V
P_DIAG_PU P gain input diagnostics pulldown resistor value PD2 PD1
0 0 1
0 1 2
1 0 3
1 1 4
INP_OV P gain input overvoltage threshold value INP+ and INP– each has threshold comparator THRS[2] THRS[1] THRS[0] % VBRG
VBRG = 2.5 V 0 0 0 72.5
0 0 1 70
0 1 0 65
VBRG = 2 V 0 1 1 90
1 0 0 87.5
1 0 1 82.5
VBRG = 1.25 V 1 1 0 100
1 1 1 95
INP_UV P gain input undervoltage threshold value INP+ and INP– each has threshold comparator THRS[2] THRS[1] THRS[0] % VBRG
VBRG = 2.5 V 0 0 0 7.5
0 0 1 10.0
0 1 0 15.0
VBRG = 2.V 0 1 1 10.0
1 0 0 12.5
1 0 1 17.5
VBRG = 1.25 V 1 1 0 17.5
1 1 1 22.5
INT_OV T gain input overvoltage INT+ and INT– each has threshold comparator 2.1 V
PGAIN_OV Output overvoltage (single-ended) threshold for P gain 2.25 V
PGAIN_UV Output undervoltage (single-ended) threshold for P gain 0.15 V
TGAIN_OV Output overvoltage (single-ended) threshold for T gain 2.25 V
TGAIN_UV Output undervoltage (single-ended) threshold for T gain 0.15 V
HARNESS_FAULT1 Open-wire leakage current 1. Open PWR with pullup on OUT 2 µA
HARNESS_FAULT2 Open-wire leakage current 2. Open GND with pulldown on OUT 20 µA

6.20 Operating Characteristics

over operating ambient temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Start-up time(1) No IIR filter, 180 µs
Start-up time(2) IIR filter = 1000 Hz 1158 µs
Output rate 128 µs
Response time(3) No IIR filter 211 µs
Response time(4) IIR filter = 1000 Hz 1050 µs
Absolute-voltage mode, overall accuracy (PGA300 only, no sense element)(5) 3 pressure - 1 temperature calibration, overall accuracy calculated using points different from points used for calibration 0.2 %FSO
3 pressure - 3 temperature calibration, input voltage not subject to temperature variation, overall accuracy calculated using points different from points used for calibration 0.1 %FSO
4 pressure - 4 temperature calibration, input voltage not subject to temperature variation, overall accuracy calculated using points different from points used for calibration 0.08 %FSO
Ratiometric-voltage mode, overall accuracy (PGA300, no sense element)(5) 3 pressure - 1 temperature calibration, overall accuracy calculated using points different from points used for calibration 0.5 %FSO
3 pressure - 3 temperature calibration, input voltage not subject to temperature variation, overall accuracy calculated using points different from points used for calibration 0.25 %FSO
4 pressure - 4 temperature calibration, input voltage not subject to temperature variation, overall accuracy calculated using points different from points used for calibration 0.2 %FSO
Current mode, overall accuracy (PGA300, no sense element)(5) 3 pressure - 1 temperature calibration, overall accuracy calculated using points different from points used for calibration 0.2 %FSO
3 pressure - 3 temperature calibration, input voltage not subject to temperature variation, overall accuracy calculated using points different from points used for calibration 0.1 %FSO
4 pressure - 4 temperature calibration, input voltage not subject to temperature variation, overall accuracy calculated using points different from points used for calibration 0.09 %FSO
(1) Time from power up to reach 90% of valid output
(2) Time from power up to reach valid output, including settling time
(3) Time to reach 90% of valid output
(4) Time to reach valid output, including settling time
(5) Sense element held at constant temperature while the PGA300 device was calibrated at –25ºC, 25ºC, 85ºC and 125ºC. Accuracy was then measured at –40ºC, 50ºC and 150 ºC.

6.21 Typical Characteristics

PGA300 D003_SLDS191.gif
Figure 1. Temperature Sensor Code vs Temperature