ZHCSJG6D March   2019  – September 2021 MSP430FR2672 , MSP430FR2673 , MSP430FR2675 , MSP430FR2676

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. 功能模块图
  5. Revision History
  6. Device Comparison
    1. 6.1 Related Products
  7. Terminal Configuration and Functions
    1. 7.1 Pin Diagrams
    2. 7.2 Pin Attributes
    3. 7.3 Signal Descriptions
    4. 7.4 Pin Multiplexing
    5. 7.5 Buffer Types
    6. 7.6 Connection of Unused Pins
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Active Mode Supply Current Into VCC Excluding External Current
    5. 8.5  Active Mode Supply Current Per MHz
    6. 8.6  Low-Power Mode LPM0 Supply Currents Into VCC Excluding External Current
    7. 8.7  Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current
    8. 8.8  Low-Power Mode LPMx.5 Supply Currents (Into VCC) Excluding External Current
    9. 8.9  Typical Characteristics – Low-Power Mode Supply Currents
    10. 8.10 Current Consumption Per Module
    11. 8.11 Thermal Resistance Characteristics
    12. 8.12 Timing and Switching Characteristics
      1. 8.12.1  Power Supply Sequencing
        1. 8.12.1.1 PMM, SVS and BOR
      2. 8.12.2  Reset Timing
        1. 8.12.2.1 Wake-up Times From Low-Power Modes and Reset
      3. 8.12.3  Clock Specifications
        1. 8.12.3.1 XT1 Crystal Oscillator (Low Frequency)
        2. 8.12.3.2 DCO FLL, Frequency
        3. 8.12.3.3 DCO Frequency
        4. 8.12.3.4 REFO
        5. 8.12.3.5 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
        6. 8.12.3.6 Module Oscillator (MODOSC)
      4. 8.12.4  Digital I/Os
        1. 8.12.4.1 Digital Inputs
        2. 8.12.4.2 Digital Outputs
        3. 8.12.4.3 Typical Characteristics – Outputs at 3 V and 2 V
      5. 8.12.5  Internal Shared Reference
        1. 8.12.5.1 Internal Reference Characteristics
      6. 8.12.6  Timer_A and Timer_B
        1. 8.12.6.1 Timer_A
        2. 8.12.6.2 Timer_B
      7. 8.12.7  eUSCI
        1. 8.12.7.1 eUSCI (UART Mode) Clock Frequency
        2. 8.12.7.2 eUSCI (UART Mode) Timing Characteristics
        3. 8.12.7.3 eUSCI (SPI Master Mode) Clock Frequency
        4. 8.12.7.4 eUSCI (SPI Master Mode)
        5. 8.12.7.5 eUSCI (SPI Slave Mode)
        6. 8.12.7.6 eUSCI (I2C Mode)
      8. 8.12.8  ADC
        1. 8.12.8.1 ADC, Power Supply and Input Range Conditions
        2. 8.12.8.2 ADC, Timing Parameters
        3. 8.12.8.3 ADC, Linearity Parameters
      9. 8.12.9  Enhanced Comparator (eCOMP)
        1. 8.12.9.1 eCOMP0 Characteristics
      10. 8.12.10 CapTIvate
        1. 8.12.10.1 CapTIvate Electrical Characteristics
        2. 8.12.10.2 CapTIvate Signal-to-Noise Ratio Characteristics
      11. 8.12.11 FRAM
        1. 8.12.11.1 FRAM Characteristics
      12. 8.12.12 Debug and Emulation
        1. 8.12.12.1 JTAG, 4-Wire and Spy-Bi-Wire Interface
  9. Detailed Description
    1. 9.1  Overview
    2. 9.2  CPU
    3. 9.3  Operating Modes
    4. 9.4  Interrupt Vector Addresses
    5. 9.5  Bootloader (BSL)
    6. 9.6  JTAG Standard Interface
    7. 9.7  Spy-Bi-Wire Interface (SBW)
    8. 9.8  FRAM
    9. 9.9  Memory Protection
    10. 9.10 Peripherals
      1. 9.10.1  Power-Management Module (PMM)
      2. 9.10.2  Clock System (CS) and Clock Distribution
      3. 9.10.3  General-Purpose Input/Output Port (I/O)
      4. 9.10.4  Watchdog Timer (WDT)
      5. 9.10.5  System (SYS) Module
      6. 9.10.6  Cyclic Redundancy Check (CRC)
      7. 9.10.7  Enhanced Universal Serial Communication Interface (eUSCI_A0, eUSCI_B0)
      8. 9.10.8  Timers (TA0, TA1, TA2, TA3 and TB0)
      9. 9.10.9  Hardware Multiplier (MPY)
      10. 9.10.10 Backup Memory (BAKMEM)
      11. 9.10.11 Real-Time Clock (RTC)
      12. 9.10.12 12-Bit Analog-to-Digital Converter (ADC)
      13. 9.10.13 eCOMP0
      14. 9.10.14 CapTIvate Technology
      15. 9.10.15 Embedded Emulation Module (EEM)
    11. 9.11 Input/Output Diagrams
      1. 9.11.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger
      2. 9.11.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger
      3. 9.11.3 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger
      4. 9.11.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger
      5. 9.11.5 Port P5 (P5.0 to P5.7) Input/Output With Schmitt Trigger
      6. 9.11.6 Port P6 (P6.0 to P6.2) Input/Output With Schmitt Trigger
    12. 9.12 Device Descriptors
    13. 9.13 Memory
      1. 9.13.1 Memory Organization
      2. 9.13.2 Peripheral File Map
    14. 9.14 Identification
      1. 9.14.1 Revision Identification
      2. 9.14.2 Device Identification
      3. 9.14.3 JTAG Identification
  10. 10Applications, Implementation, and Layout
    1. 10.1 Device Connection and Layout Fundamentals
      1. 10.1.1 Power Supply Decoupling and Bulk Capacitors
      2. 10.1.2 External Oscillator
      3. 10.1.3 JTAG
      4. 10.1.4 Reset
      5. 10.1.5 Unused Pins
      6. 10.1.6 General Layout Recommendations
      7. 10.1.7 Do's and Don'ts
    2. 10.2 Peripheral- and Interface-Specific Design Information
      1. 10.2.1 ADC Peripheral
        1. 10.2.1.1 Partial Schematic
        2. 10.2.1.2 Design Requirements
        3. 10.2.1.3 Layout Guidelines
      2. 10.2.2 CapTIvate Peripheral
        1. 10.2.2.1 Device Connection and Layout Fundamentals
        2. 10.2.2.2 125
        3. 10.2.2.3 Measurements
          1. 10.2.2.3.1 SNR
          2. 10.2.2.3.2 Sensitivity
          3. 10.2.2.3.3 Power
    3. 10.3 CapTIvate Technology Evaluation
  11. 11Device and Documentation Support
    1. 11.1 Getting Started and Next Steps
    2. 11.2 Device Nomenclature
    3. 11.3 Tools and Software
    4. 11.4 Documentation Support
    5. 11.5 支持资源
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Export Control Notice
    9. 11.9 术语表
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

说明

MSP430FR267x 是用于电容式触控检测的超低功耗 MSP430™ 微控制器,采用 CapTIvate 触控技术,适用于按钮、滑块、滚轮及邻近应用。采用 CapTIvate 技术的 MSP430 MCU 提供市面上最高集成度和自主性的电容式触控解决方案,具有高可靠性和抗噪能力以及最低功耗。TI 的电容式触控技术支持在同一设计方案中同时使用自电容式和互电容式电极,最大限度地提高了灵活性。采用 CapTIvate 技术的 MSP430 MCU 可以穿透厚玻璃、塑料外壳、金属和木材,在恶劣的环境(包括潮湿、油腻和脏污环境)中工作。

TI 电容式触控感应 MSP430 MCU 由一个由各种软、硬件资源组成的生态系统提供支持,并配套提供有参考设计和代码示例,可帮助您快速开展设计。开发套件包括 MSP-CAPT-FR2633 CapTIvate 技术开发套件。TI 还提供免费的软件,如 CapTIvate 设计中心,工程师可以在其中通过简单易用的 GUI 和 MSP430Ware™ 软件,以及包括 CapTIvate 技术指南在内的综合性文档快速进行应用开发。我们为 MSP430 MCU 提供广泛的在线配套资料(例如内务处理型示例系列MSP Academy 培训),也通过 TI E2E™ 支持论坛提供在线支持。

TI MSP430 系列低功耗微控制器包含多种器件,其中配备了不同的外设集以满足各类应用的需求。此架构与多种低功耗模式配合使用,是延长便携式测量应用电池寿命的最优选择。该 MCU 具有一个强大的 16 位 RISC CPU、16 位寄存器和常数发生器,有助于获得最大编码效率。数控振荡器 (DCO) 可使 MCU 在不到 10μs(典型值)的时间内从低功耗模式唤醒至活动模式。

有关完整的模块说明,请参阅 MSP430FR4xx 和 MSP430FR2xx 系列器件用户指南

器件信息
器件型号(1) 封装 封装尺寸(2)
MSP430FR2676TPT LQFP (48) 7mm × 7mm
MSP430FR2675TPT LQFP (48) 7mm × 7mm
MSP430FR2676TRHA VQFN (40) 6mm × 6mm
MSP430FR2675TRHA VQFN (40) 6mm × 6mm
MSP430FR2676TRHB VQFN (32) 5mm x 5mm
MSP430FR2675TRHB VQFN (32) 5mm x 5mm
MSP430FR2673TRHB VQFN (32) 5mm x 5mm
MSP430FR2672TRHB VQFN (32) 5mm x 5mm
要获得最新的产品、封装和订购信息,请参阅Section 12中的封装选项附录,或者访问德州仪器 (TI) 网站 www.ti.com.cn
这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参阅机械数据Section 12中)。
警告:

系统级静电放电 (ESD) 保护必须符合器件级 ESD 规范,以防发生电气过载或对数据或代码存储器造成干扰。如需更多信息,请参阅 MSP430 系统级 ESD 注意事项