ZHCST56 September   2023 LM74700D-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
  8. Typical Characteristics
  9. Parameter Measurement Information
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 功能方框图
    3. 9.3 Feature Description
      1. 9.3.1 Input Voltage
      2. 9.3.2 Charge Pump
      3. 9.3.3 Gate Driver
      4. 9.3.4 Enable
    4. 9.4 Device Functional Modes
      1. 9.4.1 Shutdown Mode
      2. 9.4.2 Conduction Mode
        1. 9.4.2.1 Regulated Conduction Mode
        2. 9.4.2.2 Full Conduction Mode
        3. 9.4.2.3 Reverse Current Protection Mode
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Design Considerations
        2. 10.2.2.2 MOSFET Selection
        3. 10.2.2.3 Charge Pump VCAP, Input and Output Capacitance
      3. 10.2.3 Selection of TVS Diodes for 12-V Battery Protection Applications
      4. 10.2.4 Selection of TVS Diodes and MOSFET for 24-V Battery Protection Applications
      5. 10.2.5 Application Curves
      6. 10.2.6 OR-ing Application Configuration
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 接收文档更新通知
    2. 11.2 支持资源
    3. 11.3 Trademarks
    4. 11.4 静电放电警告
    5. 11.5 术语表
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)

Regulated Conduction Mode

For the LM74700D-Q1 to operate in regulated conduction mode, the gate driver must be enabled as described in the Gate Driver section, and the current from source to drain of the external MOSFET must be within the range to result in an ANODE to CATHODE voltage drop of –11 mV to 50 mV. During forward regulation mode, the ANODE to CATHODE voltage is regulated to 20 mV by adjusting the GATE to ANODE voltage. This closed loop regulation scheme enables graceful turn-off of the MOSFET at very light loads and makes sure of zero DC reverse current flow.