SNVS606L June   2009  – December 2014 LM3530

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. I2C Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 I2C-Compatible Timing Requirements (SCL, SDA)
    7. 7.7 Simple Interface Timing
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Start-Up
      2. 8.3.2  Light Load Operation
      3. 8.3.3  Ambient Light Sensor
      4. 8.3.4  ALS Operation
      5. 8.3.5  ALS Averaging Time
        1. 8.3.5.1 Averager Operation
      6. 8.3.6  Zone Boundary Settings
      7. 8.3.7  Zone Boundary Trip Points and Hysteresis
      8. 8.3.8  Minimum Zone Boundary Settings
      9. 8.3.9  LED Current Control
      10. 8.3.10 Exponential or Linear Brightness Mapping Modes
      11. 8.3.11 PWM Input Polarity
      12. 8.3.12 I2C-Compatible Current Control Only
      13. 8.3.13 Simple Enable Disable With PWM Current Control
      14. 8.3.14 Ambient Light Current Control
      15. 8.3.15 Ambient Light Current Control + PWM
      16. 8.3.16 Interrupt Output
      17. 8.3.17 Overvoltage Protection
      18. 8.3.18 Hardware Enable
      19. 8.3.19 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown
      2. 8.4.2 I2C Mode
      3. 8.4.3 PWM + I2C Mode
      4. 8.4.4 ALS Mode
      5. 8.4.5 Simple Enable Mode
    5. 8.5 Programming
      1. 8.5.1 I2C-Compatible Interface
        1. 8.5.1.1 Start and Stop Condition
        2. 8.5.1.2 I2C-Compatible Address
        3. 8.5.1.3 Transferring Data
    6. 8.6 Register Maps
      1. 8.6.1 Register Descriptions
        1. 8.6.1.1 General Configuration Register (GP)
        2. 8.6.1.2 ALS Configuration Register
        3. 8.6.1.3 Brightness Ramp Rate Register
        4. 8.6.1.4 ALS Zone Information Register
        5. 8.6.1.5 ALS Resistor Select Register
        6. 8.6.1.6 Brightness Control Register
        7. 8.6.1.7 Zone Boundary Register
        8. 8.6.1.8 Zone Target Registers
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 LED Current Setting/Maximum LED Current
        2. 9.2.2.2 Maximum Duty Cycle
        3. 9.2.2.3 Peak Current Limit
        4. 9.2.2.4 Output Voltage Limitations
        5. 9.2.2.5 Output Capacitor Selection
        6. 9.2.2.6 Inductor Selection
        7. 9.2.2.7 Diode Selection
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Output Capacitor Placement
      2. 11.1.2 Schottky Diode Placement
      3. 11.1.3 Inductor Placement
      4. 11.1.4 Input Capacitor Selection and Placement
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)(3)
MIN MAX UNIT
VIN to GND –0.3 6 V
VSW, VOVP, VILED to GND 45
VSCL, VSDA, VALS1, VPWM, VINT, VHWEN to GND 6
VALS2 to GND –0.3 V to VIN + 0.3 V
Continuous power dissipation Internally limited
Junction temperature (TJ-MAX) 150 °C
Maximum lead temperature (soldering, 10s) See(4)
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
(3) All voltages are with respect to the potential at the GND pin.
(4) For detailed soldering specifications and information, please refer to Application Note 1112: DSBGA Wafer Level Chip Scale Package (SNVA009).

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN to GND 2.7 5.5 V
VSW, VOVP, VILED, to GND 0 40
Junction temperature (TJ)(1) –40 125 °C
Ambient temperature (TA)(2) –40 85
(1) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ= 140°C (typ.) and disengages at TJ= 125°C (typ.).
(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).

7.4 Thermal Information

THERMAL METRIC(1) DSBGA UNIT
YFQ YFZ
12 PINS
RθJA Junction-to-ambient thermal resistance(2) 61.7 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) Junction-to-ambient thermal resistance (RθJA) is taken from a thermal modeling result, performed under the conditions and guidelines set forth in the JEDEC standard JESD51-7. The test board is a 4-layer FR-4 board measuring 102 mm x 76 mm x 1.6 mm with a 2 x 1 array of thermal vias. The ground plane on the board is 50 mm x 50 mm. Thickness of copper layers are 36 µm/18 µm/18 µm/3 6µm (1.5oz/1oz/1oz/1.5oz). Ambient temperature in simulation is 22°C in still air. Power dissipation is 1W. The value of RθJA of this product in the DSBGA package could fall in a range as wide as 60ºC/W to 110ºC/W (if not wider), depending on PCB material, layout, and environmental conditions. In applications where high maximum power dissipation exists special care must be paid to thermal dissipation issues.

7.5 Electrical Characteristics

Typical (TYP) limits are for TA = 25°C; minimum (MIN) and maximum (MAX) apply over the full operating ambient temperature range (−40°C ≤ TA ≤ 85°C); VIN = 3.6 V, unless otherwise specified.(1)(2)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ILED Output current regulation 2.7 V ≥ VIN ≥ 5.5 V, Full-scale current = 19 mA, BRT Code = 0x7F, ALS Select Bit = 0, I2C Enable = 1 17.11 18.6 20.08 mA
VREG_CS Regulated current sink headroom voltage 400 mV
VHR Current sink minimum headroom voltage ILED = 95% of nominal 200 mV
RDSON NMOS switch on resistance ISW = 100 mA 0.25 Ω
ICL NMOS switch current limit 2.7 V ≤ VIN ≤ 5.5 V 739 839 936 mA
VOVP Output overvoltage protection ON Threshold, 2.7 V ≤ VIN ≤ 5.5 V 40-V version 40 41 42 V
25-V version 23.6 24 24.6
Hysteresis 1
fSW Switching frequency 2.7 V ≤ VIN ≤ 5.5 V 450 500 550 kHz
DMAX Maximum duty cycle 94%
DMIN Minimum duty cycle 10%
IQ Quiescent current, device not switching VHWEN = VIN 490 600 µA
IQ_SW Switching supply current ILED = 19 mA, VOUT = 36 V 1.35 mA
ISHDN Shutdown current VHWEN = GND, 2.7 V ≥ VIN ≥ 5.5 V 1 2 µA
ILED_MIN Minimum LED current Full-scale current = 19 mA setting
BRT = 0x01
9.5 µA
VALS Ambient light sensor reference voltage 2.7 V ≥ VIN ≥ 5.5 V (3) 0.97 1 1.03 V
VHWEN Logic thresholds - logic low 0 0.4 V
Logic thresholds - logic high 1.2 VIN
TSD Thermal shutdown 140 °C
Hysteresis 15
RALS1, RALS2 ALS input internal pull-down resistors 2.7 V ≥ VIN ≥ 5.5 V 12.77 13.531 14.29
8.504 9.011 9.518
5.107 5.411 5.715
2.143 2.271 2.399
1.836 1.946 2.055
1.713 1.815 1.917
1.510 1.6 1.69
1.074 1.138 1.202
0.991 1.050 1.109
0.954 1.011 1.068
0.888 0.941 0.994
0.717 0.759 0.802
0.679 0.719 0.760
0.661 0.700 0.740
0.629 0.666 0.704
LOGIC VOLTAGE SPECIFICATIONS (SCL, SDA, PWM, INT)
VIL Input logic low 2.7 V ≤ VIN ≤ 5.5 V 0 0.54 V
VIH Input logic high 2.7 V ≤ VIN ≤ 5.5 V 1.26 VIN V
VOL Output logic low (SDA, INT) ILOAD = 3 mA 400 mV
(1) All voltages are with respect to the potential at the GND pin.
(2) Min and Max limits are verified by design, test, or statistical analysis. Typical (typ.) numbers are not verified, but represent the most likely norm.
(3) The ALS voltage specification is the maximum trip threshold for the ALS zone boundary (Code 0xFF). Due to random offsets and the mechanism for which the hysteresis voltage varies, it is recommended that only Codes 0x04 and above be used for Zone Boundary Thresholds. See Zone Boundary Trip Points and Hysteresis and Minimum Zone Boundary Settings sections.

7.6 I2C-Compatible Timing Requirements (SCL, SDA)(1)

MIN NOM MAX UNIT
t1 SCL (Clock Period) 2.5 µs
t2 Data in setup time to SCL high 100 ns
t3 Data out stable after SCL low 0 ns
t4 SDA low setup time to SCL low (start) 100 ns
t5 SDA high hold time after SCL High (stop) 100 ns
(1) SCL and SDA must be glitch-free in order for proper brightness control to be realized.

7.7 Simple Interface Timing

MIN NOM MAX UNIT
tPWM_HIGH Enable time, PWM pin must be held high 1.5 2 2.6 ms
tPWM_LOW Disable time, PWM pin must be held low 1.48 2 2.69
30086603.gifFigure 1. I2C-Compatible Timing
30086604.gifFigure 2. Simple Enable/Disable Timing

7.8 Typical Characteristics

VIN = 3.6 V, LEDs are OVSRWAC1R6 from OPTEK Technology, COUT = 1 µF, CIN = 1 µF, L = TDK VLF5012ST-100M1R0, (RL = 0.24 Ω), ILED = 19 mA, TA = 25°C, unless otherwise specified.
30086675.png
IFULL_SCALE = 19 mA
Figure 3. LED Current vs VIN
30086657.png
ALS Resistor Select Register = 0x44
Figure 5. Internal ALS Resistor vs VIN
30086659.png
TA = −40°C ALS Resistor Select Register = 0x44
Figure 7. Internal ALS Resistor vs VIN
30086676.png
Figure 9. Max Duty Cycle vs VIN
30086677.png
Figure 11. Switching Frequency vs VIN
30086682.png
Figure 13. Simple Disable Time vs VIN
30086689.png
Channel 2: SDA (5V/div) Time Base (40ms/div)
Channel 3: ILED (10mA/div)
1.024ms/Step Up And Down
Figure 15. Ramp Rate (Exponential)
30086691.png
Channel 2: SDA (5V/div) Time Base (200ms/div)
Channel 3: ILED (10mA/div)
4.096ms/Step Up And Down
Figure 17. Ramp Rate (Exponential)
30086693.png
Channel 2: SDA (5V/div) Time Base (1s/div)
Channel 3: ILED (10mA/div)
16.384ms/Step Up And Down
Figure 19. Ramp Rate (Exponential)
30086695.png
Channel 2: SDA (5V/div) Time Base (4s/div)
Channel 3: ILED (10mA/div)
65.538ms/Step Up And Down
Figure 21. Ramp Rate (Exponential)
30086697.png
Channel 1: VIN (500mV/div) Time Base (400µs/div)
Channel 2: VOUT (500mV/div) L = 22 µH
Channel 3: ILED (500µA/div) ILED = 19 mA
VIN From 3.6 V To 3.2 V
Figure 23. Line Step Response
30086673.png
Closed Loop L = 22 µH
The value for current limit given in the Electrical Characteristics is measured in an open loop test by forcing current into SW until the current limit comparator threshold is reached. The typical curve for current limit is measured in closed loop using the typical application circuit by increasing IOUT until the peak inductor current stops increasing. Closed loop data appears higher due to the delay between the comparator trip point and the NFET turning off. This delay allows the closed loop inductor current to ramp higher after the trip point by approximately 100 ns × VIN/L.
Figure 25. Current Limit vs VIN
30086679.png
Figure 4. Shutdown Current vs VIN
30086658.png
TA = 85°C ALS Resistor Select Register = 0x44
Figure 6. Internal ALS Resistor vs VIN
30086660.png
VOUT Rising
Figure 8. Overvoltage Protection vs VIN
30086678.png
Figure 10. NFET Switch On-Resistance vs VIN
30086680.png
Figure 12. Simple Enable Time vs VIN
30086699.png
ILED Full Scale = 19 mA 50% Duty Cycle
Figure 14. ILED vs FPWM
30086690.png
Channel 2: SDA (5V/div) Time Base (100ms/div)
Channel 3: ILED (10mA/div)
2.048ms/Step Up And Down
Figure 16. Ramp Rate (Exponential)
30086692.png
Channel 2: SDA (5V/div) Time Base (400ms/div)
Channel 3: ILED (10mA/div)
8.192ms/Step Up And Down
Figure 18. Ramp Rate (Exponential)
30086694.png
Channel 2: SDA (5V/div) Time Base (2s/div)
Channel 3: ILED (10mA/div)
32.768ms/Step Up And Down
Figure 20. Ramp Rate (Exponential)
30086696.png
Channel 1: IIN (200mA/div) Time Base (2ms/div)
Channel 3: VOUT (20V/div) Ramp Rate = 8µs/Step
Channel 4 (10mA/div) ILED = 19mA
L = 22 µH VIN = 3.6V
Figure 22. Start-up Plot
30086698.png
Channel 2: PWM (5V/div) Time Base (2ms/div)
Channel 4: ILED (5mA/div) ILED Full Scale = 19 mA
DPWM From 30% To 70% FPWM = 5 kHz
Figure 24. ILED Response To Step Change In PWM Duty Cycle