SNVS739F December   2011  – October 2016 LM10504

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - General
    6. 6.6  Electrical Characteristics - Buck 1
    7. 6.7  Electrical Characteristics - Buck 2
    8. 6.8  Electrical Characteristics - Buck 3
    9. 6.9  Electrical Characteristics - LDO
    10. 6.10 Electrical Characteristics - Comparators
    11. 6.11 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Buck Regulators Description
      2. 7.3.2 PWM Operation
      3. 7.3.3 PFM Operation
      4. 7.3.4 Soft Start
      5. 7.3.5 Current Limiting
      6. 7.3.6 Internal Synchronous Rectification
      7. 7.3.7 Bypass-FET Operation on Buck 1 and Buck 2
      8. 7.3.8 Low Dropout Operation
      9. 7.3.9 Out of Regulation
    4. 7.4 Device Functional Modes
      1. 7.4.1  Start-Up Sequence
      2. 7.4.2  Power-On Default and Device Enable
      3. 7.4.3  Reset Pin Function
      4. 7.4.4  DevSLP Function
        1. 7.4.4.1 DevSLP Pin
        2. 7.4.4.2 DevSLP Programming Through SPI
        3. 7.4.4.3 DevSLP Operational Constraints
      5. 7.4.5  Vselect_B2, Vselect_B3 Function
      6. 7.4.6  Undervoltage Lockout (UVLO)
      7. 7.4.7  Overvoltage Lockout (OVLO)
      8. 7.4.8  Device Status, Interrupt Enable
      9. 7.4.9  Thermal Shutdown (TSD)
      10. 7.4.10 Comparator
    5. 7.5 Programming
    6. 7.6 Register Maps
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 External Components Selection
          1. 8.2.2.1.1 Output Inductors and Capacitors Selection
          2. 8.2.2.1.2 Inductor Selection
            1. 8.2.2.1.2.1 Recommended Method for Inductor Selection
            2. 8.2.2.1.2.2 Alternate Method for Inductor Selection
              1. 8.2.2.1.2.2.1 Suggested Inductors and Their Suppliers
          3. 8.2.2.1.3 Output and Input Capacitors Characteristics
            1. 8.2.2.1.3.1 Output Capacitor Selection
            2. 8.2.2.1.3.2 Input Capacitor Selection
        2. 8.2.2.2 Recommendations For Unused Functions and Pins
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 PCB Layout Thermal Dissipation For DSGBA Package
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

10 Layout

10.1 Layout Guidelines

PC board layout is an important part of DC-DC converter design. Poor board layout can disrupt the performance of a DC-DC converter and surrounding circuitry by contributing to EMI, ground bounce, and resistive voltage loss in the traces. These can send erroneous signals to the DC-DC converter resulting in poor regulation or instability. Good layout can be implemented by following a few simple design rules.

  1. Minimize area of switched current loops. In a buck regulator there are two loops where currents are switched rapidly. The first loop starts from the CIN input capacitor, to the regulator SWx_VIN pin, to the regulator SW pin, to the inductor then out to the output capacitor COUTand load. The second loop starts from the output capacitor ground, to the regulator SWx_GND pins, to the inductor and then out to COUT and the load (see Figure 31). To minimize both loop areas, the input capacitor must be placed as close as possible to the VIN pin. Grounding for both the input and output capacitors must consist of a small localized top-side plane that connects to PGND. The inductor must be placed as close as possible to the SW pin and output capacitor.
  2. Minimize the copper area of the switch node. The SW pins must be directly connected with a trace that runs on top-side directly to the inductor. To minimize IR losses this trace must be as short as possible and with a sufficient width. However, a trace that is wider than 100 mils increases the copper area and cause too much capacitive loading on the SW pin. The inductors must be placed as close as possible to the SW pins to further minimize the copper area of the switch node.
  3. Have a single point ground for all device analog grounds. The ground connections for the feedback components must be connected together then routed to the GND pin of the device. This prevents any switched or load currents from flowing in the analog ground plane. If not properly handled, poor grounding can result in degraded load regulation or erratic switching behavior.
  4. Minimize trace length to the FB pin. The feedback trace must be routed away from the SW pin and inductor to avoid contaminating the feedback signal with switch noise.
  5. Make input and output bus connections as wide as possible. This reduces any voltage drops on the input or output of the converter and can improve efficiency. If voltage accuracy at the load is important make sure feedback voltage sense is made at the load. Doing so corrects for voltage drops at the load and provide the best output accuracy.

10.1.1 PCB Layout Thermal Dissipation For DSGBA Package

  1. Position ground layer as close as possible to DSBGA package. Second PCB layer is usually good option. LM10504 evaluation board is a good example.
  2. Draw power traces as wide as possible. Bumps which carry high currents must be connected to wide traces. This helps the silicon to cool down.

10.2 Layout Example

LM10504 30176926.png
Outside 7×7 array, 0.4-mm DSBGA 34-bump with 24 peripheral and 6 inner vias = 30 individual signals
Figure 30. Possible PCB Layout Configuration
LM10504 30176925.gif Figure 31. Schematic of LM10504 Highlighting Layout Sensitive Nodes