ZHCSVU6O December   1991  – October 2025 TL1431 , TL1431M

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 引脚配置和功能
  6. 规格
    1. 5.1 绝对最大额定值
    2. 5.2 TL1431C/TL1431Q 的 ESD 等级
    3. 5.3 建议运行条件
    4. 5.4 热性能信息
    5. 5.5 电气特性 - TL1431C
    6. 5.6 电气特性 - TL1431Q
    7. 5.7 电气特性 - TL1431M
    8. 5.8 典型特性
  7. 参数测量信息
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
    4. 7.4 器件功能模式
      1. 7.4.1 开环(比较器)
      2. 7.4.2 闭环
  9. 应用和实施
    1. 8.1 应用信息
    2. 8.2 典型应用
      1. 8.2.1 设计要求
      2. 8.2.2 详细设计过程
        1. 8.2.2.1 可编程输出/阴极电压
        2. 8.2.2.2 总精度
        3. 8.2.2.3 稳定性
        4. 8.2.2.4 启动时间
      3. 8.2.3 应用曲线
    3. 8.3 系统示例
  10. 电源相关建议
  11. 10布局
    1. 10.1 布局指南
    2. 10.2 布局示例
  12. 11器件和文档支持
    1. 11.1 第三方产品免责声明
    2. 11.2 文档支持
      1. 11.2.1 相关文档
    3. 11.3 接收文档更新通知
    4. 11.4 支持资源
    5. 11.5 商标
    6. 11.6 静电放电警告
    7. 11.7 术语表
  13. 12修订历史记录
  14. 13机械、封装和可订购信息

总精度

当对高于单位增益 (VKA=VREF) 的输出进行编程时,除 VREF 之外,TL1431 还容易受其他误差的影响,这些误差可能会影响整体精度。这些误差包括:

  • R1 和 R2 的精度
  • VI(dev) – 基准电压随温度的变化
  • ΔVREF/ΔVKA - 基准电压变化量与阴极电压变化量之比
  • |zKA| - 动态阻抗,通过阴极电流导致阴极电压的变化

将所有这些变量考虑在内,便可确定最坏情况下的阴极电压。