• Menu
  • Product
  • Email
  • PDF
  • Order now
  • TPS732 具有反向电流保护功能的无电容 NMOS 250mA 低压降稳压器

    • ZHCSUK2Q August   2003  – September 2024 TPS732

      PRODUCTION DATA  

  • CONTENTS
  • SEARCH
  • TPS732 具有反向电流保护功能的无电容 NMOS 250mA 低压降稳压器
  1.   1
  2. 1 特性
  3. 2 应用
  4. 3 说明
  5. 4 Pin Configuration and Functions
  6. 5 Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Thermal Information
    6. 5.6 Electrical Characteristics
    7. 5.7 Switching Characteristics
    8. 5.8 Typical Characteristics
  7. 6 Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagrams
    3. 6.3 Feature Description
      1. 6.3.1 Output Noise
      2. 6.3.2 Internal Current Limit
      3. 6.3.3 Enable Pin and Shutdown
      4. 6.3.4 Dropout Voltage
      5. 6.3.5 Reverse Current
    4. 6.4 Device Functional Modes
      1. 6.4.1 Normal Operation With 1.7V ≤ VIN ≤ 5.5V and VEN ≥ 1.7V
  8. 7 Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Input and Output Capacitor Requirements
        2. 7.2.2.2 Transient Response
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Thermal Considerations
          1. 7.4.1.1.1 Power Dissipation
      2. 7.4.2 Layout Examples
  9. 8 Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 Evaluation Modules
        2. 8.1.1.2 Spice Models
      2. 8.1.2 Device Nomenclature
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 接收文档更新通知
    4. 8.4 支持资源
    5. 8.5 Trademarks
    6. 8.6 静电放电警告
    7. 8.7 术语表
  10. 9 Revision History
  11. 10Mechanical, Packaging, and Orderable Information
  12. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

Data Sheet

TPS732 具有反向电流保护功能的无电容 NMOS 250mA 低压降稳压器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

下载最新的英语版本

1 特性

  • 不借助输出电容器或者任何电容值或类型的电容器即可实现稳定
  • 输入电压范围:1.7V 至 5.5V
  • 超低压降电压:250mA 时典型值为 40mV
  • 无论是否使用可选输出电容器,均可实现出色的负载瞬态响应
  • NMOS 拓扑可提供低反向漏电流
  • 低噪声:30μVRMS 典型值(10kHz 至 100kHz)
  • 初始精度为 0.5%
  • 总体精度(包括线路、负载和温度精度)为 1%
  • 关断模式下 IQ 最大值小于 1μA
  • 热关断和指定最小/最大电流限制保护
  • 提供了多个输出电压版本:
    • 1.2V 至 5V 固定输出
    • 1.2V 至 5.5V 可调节输出
    • 可提供定制输出

2 应用

  • 便携式和电池供电类设备
  • 适用于开关电源的后置稳压
  • 噪声敏感电路(如 VCO)
  • 适用于 DSP、FPGA、ASIC 和微处理器的负载点调节

3 说明

TPS732 低压降 (LDO) 稳压器在电压跟随器配置中使用 NMOS 导通晶体管。该拓扑在使用具有低等效串联电阻 (ESR) 的输出电容器时保持稳定,甚至可实现无电容器运行。此器件还提供高反向阻断(低反向电流)和接地引脚电流,该电流在所有输出电流上几乎保持恒定。

TPS732 利用先进的 BiCMOS 工艺实现高精度,同时提供超低压降电压和低接地引脚电流。未启用时,电流消耗小于 1μA,适用于便携式应用。极低的输出噪声(0.1μF CNR 时为 30μVRMS)使得此器件非常适合为 VCO 供电。该器件受到热关断和折返电流限制的保护。

封装信息
器件型号 封装(1) 封装尺寸(2)
TPS732 DBV(SOT-23,5) 2.9mm × 2.8mm
DCQ(SOT-223,6) 6.5mm × 7.06mm
DRB(VSON,8) 3mm × 3mm
(1) 如需更多信息,请参阅机械、封装和可订购信息。
(2) 封装尺寸(长 × 宽)为标称值,并包括引脚(如适用)。

 

TPS732 针对固定电压版本的典型应用电路针对固定电压版本的典型应用电路

4 Pin Configuration and Functions

TPS732 DBV Package,5-Pin SOT-23(Top View)Figure 4-1 DBV Package,5-Pin SOT-23(Top View)
TPS732 DCQ Package,6-Pin SOT-223(Top View)Figure 4-3 DCQ Package,6-Pin SOT-223
(Top View)
TPS732 DRB Package,8-Pin VSON With Exposed Thermal Pad(Top View)Figure 4-2 DRB Package,8-Pin VSON With Exposed Thermal Pad(Top View)
Table 4-1 Pin Functions
PIN TYPE DESCRIPTION
NAME NO.
SOT-23 SOT-223 VSON
IN 1 1 8 I Input supply.
GND 2 3, 6 4, Pad — Ground.
EN 3 5 5 I Driving the enable pin (EN) high turns on the regulator. Driving this pin low puts the regulator into shutdown mode. See the Enable Pin and Shutdown section under Feature Description for more details. Connect EN to IN if not used.
NR 4 4 3 — Fixed voltage versions only—connecting an external capacitor to this pin bypasses noise generated by the internal band gap, reducing output noise to very low levels.
FB 4 4 3 I Adjustable voltage version only—this pin is the input to the control loop error amplifier, and is used to set the output voltage of the device.
OUT 5 2 1 O Output of the regulator. There are no output capacitor requirements for stability.

5 Specifications

5.1 Absolute Maximum Ratings

over operating junction temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage Input, VIN –0.3 6 V
Enable, VEN –0.3 6
Output, VOUT –0.3 5.5
VNR, VFB –0.3 6
Current Maximum output, IOUT Internally limited
Output short-circuit duration Indefinite
Continuous total power dissipation PDISS See Thermal Information
Temperature Operating junction, TJ –55 150 °C
Storage, Tstg –65 150
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

5.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating junction temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN Input supply voltage 1.7 5.5 V
IOUT Output current 0 250 mA
TJ Operating junction temperature –40 125 °C

5.4 Thermal Information

THERMAL METRIC(1) TPS732 M3 new silicon UNIT
DRB (VSON) DCQ (SOT-223)
8 PINS 6 PINS
RθJA Junction-to-ambient thermal resistance 47.7 76 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 68.9 46.6 °C/W
RθJB Junction-to-board thermal resistance 20.6 18.1 °C/W
ψJT Junction-to-top characterization parameter 3.4 8.6 °C/W
ψJB Junction-to-board characterization parameter 20.6 17.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.5 N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

5.5 Thermal Information

THERMAL METRIC(1)(2) TPS732 Legacy silicon(3) UNIT
DRB (VSON) DCQ (SOT-223) DBV (SOT-23)
8 PINS 6 PINS 5 PINS
RθJA Junction-to-ambient thermal resistance 58.3 53.1 205.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 93.8 35.2 119 °C/W
RθJB Junction-to-board thermal resistance 72.8 7.8 35.4 °C/W
ψJT Junction-to-top characterization parameter 2.7 2.9 12.7 °C/W
ψJB Junction-to-board characterization parameter 25 7.7 34.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 5 N/A N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.
(3) Thermal data for the DRB, DCQ, and DBV packages are derived by thermal simulations based on JEDEC-standard methodology as specified in the JESD51 series. The following assumptions are used in the simulations:
(a) i. DRB: The exposed pad is connected to the PCB ground layer through a 2x2 thermal via array.
 ii. DCQ: The exposed pad is connected to the PCB ground layer through a 3x2 thermal via array.
 iii. DBV: There is no exposed pad with the DBV package.
(b) i. DRB: The top and bottom copper layers are assumed to have a 20% thermal conductivity of copper representing a 20% copper coverage.
 ii. DCQ: Each of top and bottom copper layers has a dedicated pattern for 20% copper coverage.
 iii. DBV: The top and bottom copper layers are assumed to have a 20% thermal conductivity of copper representing a 20% copper coverage.
(c) These data were generated with only a single device at the center of a JEDEC high-K (2s2p) board with 3in × 3in copper area. To understand the effects of the copper area on thermal performance, see the Power Dissipation section of this data sheet.

5.6 Electrical Characteristics

Over operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) +  0.5V(1), IOUT = 10mA, VEN = 1.7V , and COUT = 0.1μF , unless otherwise noted. Typical values are at TJ = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input voltage range(1) 1.7 5.5 V
VFB Internal reference (TPS73201) TJ = 25°C  1.198 1.204 1.210 V
VOUT Output voltage range (TPS73201)(2) VFB 5.5 - VDO V
Accuracy(1)(3) Nominal  TJ = 25°C –0.5 0.5 %
VIN, IOUT, and T  VOUT + 0.5V ≤ VIN ≤ 5.5V; 10mA ≤ IOUT ≤ 250mA  –1 ±0.5 1
ΔVOUT(ΔVIN) Line regulation (1) VOUT(NOM) + 0.5V ≤ VIN ≤ 5.5V 0.01 %/V
ΔVOUT(ΔIOUT) Load regulation 1mA ≤ IOUT ≤ 250mA 0.002 %/mA
10mA ≤ IOUT ≤ 250mA 0.0005
VDO Dropout voltage(4) (VIN = VOUT(NOM) - 0.1V) IOUT = 250mA 40 150 mV
ZO(do) Output impedance in dropout 1.7V ≤ VIN ≤ VOUT + VDO 0.25 Ω
ICL Output current limit VOUT = 0.9 × VOUT(nom)  250 425 600 mA
ISC Short-circuit current VOUT = 0V  300 mA
IREV Reverse leakage current(5) (-IIN) VEN ≤ 0.5V, 0V ≤ VIN ≤ VOUT  0.1 10 µA
IGND Ground pin current IOUT = 10mA (IQ), legacy silicon 400 550 µA
IOUT = 10mA (IQ), new silicon, M3 suffix   400 630
IGND Ground pin current IOUT = 250mA 650 950 µA
ISHDN Shutdown current (IGND) VEN ≤ 0.5V, VOUT ≤ VIN ≤ 5.5V, –40°C ≤ TJ ≤ 100℃, legacy silicon      0.02 1 µA
VEN ≤ 0.5V, VOUT ≤ VIN ≤ 5.5V, new silicon, M3 suffix 0.02 1
IFB Feedback pin current (TPS73201) 0.1 0.3 µA
PSRR Power-supply rejection ratio (ripple rejection) f = 100Hz, IOUT = 250mA  58 dB
f = 10kHz, IOUT = 250mA 37
VN Output noise voltage, BW = 10Hz to 100kHz COUT = 10µF, no CNR 27 x VOUT µVRMS
COUT = 10µF, CNR =0.01µF 8.5 x VOUT
VEN(high) EN pin high (enabled) 1.7 VIN V
VEN(low) EN pin low (shutdown) 0 0.5 V
IEN(high) Enable pin current (enabled) VEN = 5.5V   0.02 0.1 µA
TSD Thermal shutdown temperature Shutdown, temperature increasing 160 °C
Reset, temperature decreasing 140
TJ Operating junction temperature –40 125 ℃
(1) Minimum VIN = VOUT + VDO or 1.7V, whichever is greater.
(2) TPS73201 is tested at VOUT = 2.5V.
(3) Tolerance of external resistors not included in this specification.
(4) VDO is not measured for output versions with VOUT(nom) < 1.8V, because minimum VIN = 1.7V.
(5) Fixed-voltage versions only; refer to Application Information section for more information.

5.7 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tSTR Start-up time VOUT = 3V, RL = 30Ω, COUT = 1µF, CNR = 0.01µF
 
600 µs

5.8 Typical Characteristics

for all voltage versions at TJ = 25°C, VIN = VOUT(nom) + 0.5V, IOUT = 10mA, VEN = 1.7V, and COUT = 0.1μF (unless otherwise noted)

TPS732 Load
                        Regulation
Legacy silicon
Figure 5-1 Load Regulation
TPS732 Line
                        Regulation
Legacy silicon
Figure 5-3 Line Regulation
TPS732 Dropout Voltage vs Output Current
Legacy silicon
Figure 5-5 Dropout Voltage vs Output Current
TPS732 Dropout Voltage vs Temperature
Legacy silicon
Figure 5-7 Dropout Voltage vs Temperature
TPS732 Output Voltage Accuracy Histogram
Legacy silicon
Figure 5-9 Output Voltage Accuracy Histogram
TPS732 Ground Pin Current vs Output Current
Legacy silicon
Figure 5-11 Ground Pin Current vs Output Current
TPS732 Ground Pin Current vs Temperature
Legacy silicon
Figure 5-13 Ground Pin Current vs Temperature
TPS732 Ground Pin Current in Shutdown vs Temperature
Legacy silicon
Figure 5-15 Ground Pin Current in Shutdown vs Temperature
TPS732 Current Limit vs VOUT (Foldback)
Legacy silicon
Figure 5-17 Current Limit vs VOUT (Foldback)
TPS732 Current Limit vs VIN
Legacy silicon
Figure 5-19 Current Limit vs VIN
TPS732 Current Limit vs Temperature
Legacy silicon
Figure 5-21 Current Limit vs Temperature
TPS732 PSRR
                        (Ripple Rejection) vs Frequency
Legacy silicon
Figure 5-23 PSRR (Ripple Rejection) vs Frequency
TPS732 PSRR
                        (Ripple Rejection) vs (VIN – VOUT)
Legacy silicon
Figure 5-25 PSRR (Ripple Rejection) vs (VIN – VOUT)
TPS732 Noise
                        Spectral Density CNR = 0µF
Legacy silicon
Figure 5-27 Noise Spectral Density CNR = 0µF
TPS732 Noise
                        Spectral Density CNR = 0.01µF
Legacy silicon
Figure 5-29 Noise Spectral Density CNR = 0.01µF
TPS732 RMS
                        Noise Voltage vs COUT
Legacy silicon
Figure 5-31 RMS Noise Voltage vs COUT
TPS732 RMS
                        Noise Voltage vs CNR
Legacy silicon
Figure 5-33 RMS Noise Voltage vs CNR
TPS732 TPS73233 Load Transient Response
Legacy silicon
Figure 5-35 TPS73233 Load Transient Response
TPS732 TPS73233 Line Transient Response
Legacy silicon
Figure 5-37 TPS73233 Line Transient Response
TPS732 TPS73233 Turn-On Response
Legacy silicon
Figure 5-39 TPS73233 Turn-On Response
TPS732 TPS73233 Turn-Off Response
Legacy silicon
Figure 5-41 TPS73233 Turn-Off Response
TPS732 TPS73233 Power-Up and Power-Down
Legacy silicon
Figure 5-43 TPS73233 Power-Up and Power-Down
TPS732 IENABLE vs Temperature
.
Legacy silicon
Figure 5-45 IENABLE vs Temperature
TPS732 TPS73201 RMS Noise Voltage vs CFB
Legacy silicon
Figure 5-47 TPS73201 RMS Noise Voltage vs CFB
TPS732 TPS73201 IFB vs Temperature
Legacy silicon
Figure 5-49 TPS73201 IFB vs Temperature
TPS732 TPS73201 Load Transient, Adjustable Version
Legacy silicon
Figure 5-51 TPS73201 Load Transient, Adjustable Version
TPS732 TPS73201 Line Transient, Adjustable Version
Legacy silicon
Figure 5-53 TPS73201 Line Transient, Adjustable Version
TPS732 Load
                        Regulation
New silicon, M3 suffix
Figure 5-2 Load Regulation
TPS732 Line
                        Regulation
New silicon, M3 suffix
Figure 5-4 Line Regulation
TPS732 Dropout Voltage vs Output Current
New silicon, M3 suffix
Figure 5-6 Dropout Voltage vs Output Current
TPS732 Dropout Voltage vs Temperature
New silicon, M3 suffix
Figure 5-8 Dropout Voltage vs Temperature
TPS732 Output Voltage Drift Histogram
Legacy silicon
Figure 5-10 Output Voltage Drift Histogram
TPS732 Ground Pin Current vs Output Current
New silicon, M3 suffix
Figure 5-12 Ground Pin Current vs Output Current
TPS732 Ground Pin Current vs Temperature
New silicon, M3 suffix
Figure 5-14 Ground Pin Current vs Temperature
TPS732 Ground Pin Current in Shutdown vs Temperature
New silicon, M3 suffix
Figure 5-16 Ground Pin Current in Shutdown vs Temperature
TPS732 Current Limit vs VOUT (Foldback)
New silicon, M3 suffix
Figure 5-18 Current Limit vs VOUT (Foldback)
TPS732 Current Limit vs VIN
New silicon, M3 suffix
Figure 5-20 Current Limit vs VIN
TPS732 Current Limit vs Temperature
New silicon, M3 suffix
Figure 5-22 Current Limit vs Temperature
TPS732 PSRR
                        (Ripple Rejection) vs Frequency
New silicon, M3 suffix
Figure 5-24 PSRR (Ripple Rejection) vs Frequency
TPS732 PSRR
                        (Ripple Rejection) vs (VIN – VOUT)
New silicon, M3 suffix
Figure 5-26 PSRR (Ripple Rejection) vs (VIN – VOUT)
TPS732 Noise
                        Spectral Density CNR = 0µF
New silicon, M3 suffix
Figure 5-28 Noise Spectral Density CNR = 0µF
TPS732 Noise
                        Spectral Density CNR = 0.01µF
New silicon, M3 suffix
Figure 5-30 Noise Spectral Density CNR = 0.01µF
TPS732 RMS
                        Noise Voltage vs COUT
New silicon, M3 suffix
Figure 5-32 RMS Noise Voltage vs COUT
TPS732 RMS
                        Noise Voltage vs CNR
New silicon, M3 suffix
Figure 5-34 RMS Noise Voltage vs CNR
TPS732 TPS73233 Load Transient Response
New silicon, M3 suffix
Figure 5-36 TPS73233 Load Transient Response
TPS732 TPS73233 Line Transient Response
New silicon, M3 suffix
Figure 5-38 TPS73233 Line Transient Response
TPS732 TPS73233 Turn-On Response
New silicon, M3 suffix
Figure 5-40 TPS73233 Turn-On Response
TPS732 TPS73233 Turn-Off Response
New silicon, M3 suffix
Figure 5-42 TPS73233 Turn-Off Response
TPS732 TPS73233 Power-Up and Power-Down
New silicon, M3 suffix
Figure 5-44 TPS73233 Power-Up and Power-Down
TPS732 IENABLE vs Temperature
.
New silicon, M3 suffix
Figure 5-46 IENABLE vs Temperature
TPS732 TPS73201 RMS Noise Voltage vs CFB
New silicon, M3 suffix
Figure 5-48 TPS73201 RMS Noise Voltage vs CFB
TPS732 TPS73201 IFB vs Temperature
New silicon, M3 suffix
Figure 5-50 TPS73201 IFB vs Temperature
TPS732 TPS73201 Load Transient, Adjustable Version
New silicon, M3 suffix
Figure 5-52 TPS73201 Load Transient, Adjustable Version
TPS732 TPS73201 Line Transient, Adjustable Version
New silicon, M3 suffix
Figure 5-54 TPS73201 Line Transient, Adjustable Version

6 Detailed Description

6.1 Overview

The TPS732 low-dropout linear regulator operates down to an input voltage of 1.7V and supports output voltages down to 1.2V while sourcing up to 250mA of load current. This linear regulator uses an NMOS pass transistor with an integrated 4MHz charge pump to provide a dropout voltage of less than 150mV at full load current. This unique architecture also permits stable regulation over a wide range of output capacitors. Furthermore, the TPS732 does not require any output capacitor for stability. The increased insensitivity to the output capacitor value and type makes this linear regulator designed for powering a load where the effective capacitance is unknown.

The TPS732 also features a noise-reduction (NR) pin that allows for additional reduction of the output noise. With a noise reduction capacitor of 0.01µF connected from the NR pin to GND, the TPS73215 typical output noise is 12.75µVRMS. The low noise output featured by the TPS732 makes the device designed for powering VCOs or any other noise-sensitive load.

6.2 Functional Block Diagrams

TPS732 Fixed-Voltage VersionFigure 6-1 Fixed-Voltage Version
TPS732 Adjustable-Voltage Version Figure 6-2 Adjustable-Voltage Version

6.3 Feature Description

6.3.1 Output Noise

A precision band-gap reference is used to generate the internal reference voltage, VREF. This reference is the dominant noise source within the TPS732 and generates approximately 32µVRMS (10Hz to 100kHz) at the reference output (NR). The regulator control loop gains up the reference noise with the same gain as the reference voltage, so that the noise voltage of the regulator is approximately given by:

Equation 1. TPS732

Because the value of VREF is 1.2V, this relationship reduces to:

Equation 2. TPS732

An internal 27kΩ resistor in series with the noise-reduction pin (NR) forms a low-pass filter for the voltage reference when an external noise-reduction capacitor, CNR, is connected from NR to ground. For CNR = 10nF, the total noise in the 10Hz to 100kHz bandwidth is reduced by a factor of approximately 3.2, giving the approximate relationship:

Equation 3. TPS732

for CNR = 10nF.

This noise-reduction effect is shown as RMS Noise Voltage vs CNR (Figure 5-33) in the Typical Characteristics section.

The TPS73201 adjustable version does not have the NR pin available. However, connecting a feedback capacitor, CFB, from the output to the feedback pin (FB) reduces output noise and improves load transient performance.

The TPS732 uses an internal charge pump to develop an internal supply voltage sufficient to drive the gate of the NMOS pass transistor above VOUT. The charge pump generates approximately 250μV of switching noise at approximately 4MHz; however, charge-pump noise contribution is negligible at the output of the regulator for most values of IOUT and COUT.

6.3.2 Internal Current Limit

The TPS732 internal current limit helps protect the regulator during fault conditions. Foldback current limit helps to protect the regulator from damage during output short-circuit conditions by reducing current limit when VOUT drops below 0.5V. See Figure 5-17 in the Typical Characteristics section for a graph of IOUT vs VOUT.

From Figure 5-17 approximately –0.2V of VOUT results in a current limit of 0mA. Therefore, if OUT is forced below –0.2V before EN goes high, the device potentially does not start up. In applications that work with both a positive and negative voltage supply, enable the TPS732 first.

6.3.3 Enable Pin and Shutdown

The enable pin (EN) is active high and is compatible with standard TTL-CMOS levels. A VEN below 0.5V (maximum) turns the regulator off and drops the GND pin current to approximately 10nA. When EN is used to shut down the regulator, all charge is removed from the pass transistor gate. A VEN above 1.7V (minimum) turns the regulator on and the output ramps back up to a regulated VOUT (see Figure 5-39).

When shutdown capability is not required, connect EN to VIN. However, the pass transistor potentially does not discharge using this configuration, causing the pass transistor to be left on (enhanced) for a significant time after VIN is removed. This scenario results in reverse current flow (if the IN pin is low impedance) and faster ramp times upon power up. In addition, for VIN ramp times slower than a few milliseconds, the output potentially overshoots upon power up.

Current limit foldback prevents device start-up under some conditions. See the Internal Current Limit section.

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale