本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。
REF35 是毫微功耗、低漂移、高精度串联基准系列器件。REF35 系列具有 ±0.05% 的初始精度,典型功耗为 650nA。该器件的温度系数 (12ppm/°C) 和长期稳定性(1000 小时内为 40ppm)有助于提高系统稳定性和可靠性。凭借低功耗以及高精度规格,此器件适用于多种便携式应用和低电流应用。
REF35 可提供高达 10mA 电流,噪声为 3.3ppmp-p,负载调整率为 20ppm/mA。借助这一功能集,REF35 可为精密传感器和 12 至 16 位数据转换器提供强大的低噪声高精度电源。
此系列的额定工作温度范围为 -40°C 至 105°C,并且在 -55°C 至 125°C 也可以正常运行。凭借宽温度范围,此系列适用于工业应用。
REF35 提供 1.024V 至 5.0V 的宽输出电压范围。该器件具有节省空间的 6 引脚 SOT-23 和 4 引脚 WCSP 封装选项。有关可用的电压和封装选项,请联系您当地的 TI 销售代表。
PRODUCT | VREF | |
---|---|---|
SOT-23 (6) | WCSP (4) | |
REF35102QDBVR | REF35102YBHR | 1.024V |
REF35120QDBVR | REF35120YBHR | 1.2V |
REF35125QDBVR | REF35125YBHR | 1.25V |
REF35160QDBVR | REF35160YBHR | 1.6V |
REF35170QDBVR | - | 1.7V |
REF35180QDBVR | REF35180YBHR | 1.8V |
REF35205QDBVR | - | 2.048V |
REF35250QDBVR | REF35250YBHR | 2.5V |
REF35300QDBVR | REF35300YBHR | 3.0V |
REF35330QDBVR | - | 3.3V |
REF35360QDBVR | - | 3.6V |
REF35409QDBVR | REF35409YBHR | 4.096V |
REF35500QDBVR | - | 5.0V |
PIN | TYPE | DESCRIPTION | ||
---|---|---|---|---|
NAME | SOT-23 | WCSP | ||
GND | 1 | B1 | Ground | Device ground connection. For DBV package pin 1 and pin 2 are internally short. |
GND | 2 | - | Ground | Device ground connection. |
EN | 3 | B2 | Input | Enable connection. Enables or disables the device. |
VIN | 4 | A2 | Power | Input supply voltage connection. |
NR | 5 | - | Output | Noise reduction pin. Connect a capacitor to reduce noise. This pin can be left floating. |
VREF | 6 | A1 | Output | Reference voltage output. |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Input voltage | IN | –0.3 | 6.5 | V |
Enable voltage | EN | –0.3 | IN + 0.3 (2) | V |
Output voltage | VREF | –0.3 | IN + 0.3 (2) | V |
Output short circuit current | ISC | 20 | mA | |
Operating temperature range | TA | –55 | 125 | °C |
Storage temperature range | Tstg | –65 | 170 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1) | ±2000 | V |
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins (2) | ±750 |
THERMAL METRIC(1) | REF35 | UNIT | ||
---|---|---|---|---|
YBH (WCSP) | DBV (SOT-23) | |||
4 PINS | 6 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 178.9 | 164.4 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 1.1 | 102.5 | °C/W |
RθJB | Junction-to-board thermal resistance | 60.3 | 59.6 | °C/W |
ΨJT | Junction-to-top characterization parameter | 0.5 | 44.0 | °C/W |
ΨJB | Junction-to-board characterization parameter | 60.2 | 59.4 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | N/A | N/A | °C/W |
PARAMETER | TEST CONDITION | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
ACCURACY AND DRIFT | |||||||
Output voltage accuracy | TA = 25℃ | –0.05 | 0.05 | % | |||
Output voltage temperature coefficient | –40℃ ≤ TA ≤ 105℃ | 12 | ppm/℃ | ||||
LINE AND LOAD REGULATION | |||||||
ΔVREF/ΔVIN | Line regulation | VREF < 2.5V; VIN = VREF + VDO to VINMAX; –40℃ ≤ TA ≤ 105℃ | 40 | 160 | ppm/V | ||
VREF ≥ 2.5V; VIN = VREF + VDO to VINMAX; –40℃ ≤ TA ≤ 105℃ | 40 | 120 | ppm/V | ||||
ΔVREF/ΔIL | Load regulation | IL = 0mA to 10mA, VIN = VREF + VDO |
Source | 20 | 60 | ppm/mA | |
IL = 0mA to 5mA, VIN = VREF + VDO |
Sink | 40 | 350 | ppm/mA | |||
POWER SUPPLY | |||||||
VIN | Input voltage (1) | VREF + VDO | 6 | V | |||
IQ | Quiescent current | Active mode | TA = 25℃ | 0.65 | 0.9 | µA | |
–40℃ ≤ TA ≤ 85℃ | 1.3 | ||||||
–40℃ ≤ TA ≤ 125℃ | 2.6 | ||||||
Shutdown mode | TA = 25℃ | 0.1 | |||||
–40℃ ≤ TA ≤ 125℃ | 0.5 | ||||||
VEN | Enable pin voltage | Active mode (EN = 1 or Float) | 0.7 x VIN | V | |||
Shutdown mode (EN = 0) | 0.3 x VIN | ||||||
IEN | Enable pin current | VEN = VIN | 0.05 | 0.1 | uA | ||
VDO | Dropout voltage | IL = 5mA | 120 | mV | |||
IL = 10mA | 250 | ||||||
ISC | Short circuit current, Sourcing | VREF = 0V, TA = 25℃ | 33 | mA | |||
ISC | Short circuit current, Sinking | VREF = VIN V, TA = 25℃ | 21 | mA | |||
TURN-ON TIME | |||||||
tON | Turn-on time (2) | 0.1% settling, CL = 1µF, VREF = 2.5V | 2 | ms | |||
NOISE | |||||||
en | Output voltage noise | ƒ = 10Hz to 1kHz, CL = 1µF | 0.7 | ppmrms | |||
enp-p | Low-frequency noise | ƒ = 0.1Hz to 10Hz, VREF ≥ 2.5V | 3.8 | ppmp-p | |||
ƒ = 0.1Hz to 10Hz, VREF < 2.5V | 3.3 | ppmp-p | |||||
HYSTERESIS AND LONG-TERM STABILITY | |||||||
Long-term stability | 0 to 1000h at 35°C | 40 | ppm | ||||
Output voltage hysteresis | 25°C, –40°C, 105°C, 25°C (cycle 1) | 70 | ppm | ||||
Output voltage hysteresis | 25°C, –40°C, 105°C, 25°C (cycle 2) | 20 | ppm | ||||
Output voltage hysteresis | 25°C, –40°C, 85°C, 25°C (cycle 1) | 50 | ppm | ||||
Output voltage hysteresis | 25°C, –40°C, 85°C, 25°C (cycle 2) | 13 | ppm | ||||
STABLE CAPACITANCE RANGE | |||||||
Input capacitor range | 0.1 | µF | |||||
Output capacitor range (3) | 0.1 | 10 | µF |
PARAMETER | TEST CONDITION | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
ACCURACY AND DRIFT | |||||||
Output voltage accuracy | TA = 25℃ | –0.05 | 0.05 | % | |||
Output voltage temperature coefficient | –40℃ ≤ TA ≤ 85℃ | 10 | ppm/℃ | ||||
LINE AND LOAD REGULATION | |||||||
ΔVREF/ΔVIN | Line regulation | VREF < 2.5V; VIN = VREF + VDO to VINMAX | 40 | 160 | ppm/V | ||
VREF ≥ 2.5V; VIN = VREF + VDO to VINMAX | 40 | 80 | ppm/V | ||||
ΔVREF/ΔIL | Load regulation | IL = 0mA to 10mA, VIN = VREF + VDO |
Source | 20 | 60 | ppm/mA | |
IL = 0mA to 5mA, VIN = VREF + VDO |
Sink | 40 | 350 | ppm/mA | |||
POWER SUPPLY | |||||||
VIN | Input voltage (1) | VREF + VDO | 6 | V | |||
IQ | Quiescent current | Active mode | TA = 25℃ | 0.65 | 0.9 | µA | |
–40℃ ≤ TA ≤ 85℃ | 1.3 | ||||||
–40℃ ≤ TA ≤ 125℃ | 2.6 | ||||||
Shutdown mode | TA = 25℃ | 0.1 | |||||
–40℃ ≤ TA ≤ 125℃ | 0.5 | ||||||
VEN | Enable pin voltage | Active mode (EN = 1 or Float) | 0.7 x VIN | V | |||
Shutdown mode (EN = 0) | 0.3 x VIN | ||||||
IEN | Enable pin current | VEN = VIN | 0.05 | 0.1 | uA | ||
VDO | Dropout voltage | IL = 5mA | 120 | mV | |||
IL = 10mA | 250 | ||||||
ISC | Short circuit current, Sourcing | VREF = 0V, TA = 25℃ | 30 | mA | |||
ISC | Short circuit current, Sinking | VREF = VIN V, TA = 25℃ | 20 | mA | |||
TURNON TIME | |||||||
tON | Turn-on time (2) | 0.1% settling, CREF = 1µF, VREF = 2.048V | 2 | ms | |||
NOISE | |||||||
en | Output voltage noise | ƒ = 10Hz to 1kHz | 0.7 | ppmrms | |||
enp-p | Low frequency noise | ƒ = 0.1Hz to 10Hz, VREF ≥ 2.5V | 3.8 | ppmp-p | |||
ƒ = 0.1Hz to 10Hz, VREF < 2.5V | 3.3 | ppmp-p | |||||
HYSTERESIS AND LONG-TERM STABILITY | |||||||
Long-term stability | 0 to 1000h at 35°C | 40 | ppm | ||||
Output voltage hysteresis | 25°C, –40°C, 125°C, 25°C (cycle 1) | 70 | ppm | ||||
STABLE CAPACITANCE RANGE | |||||||
Input capacitor range | 0.1 | µF | |||||
Output capacitor range (3) | 0.1 | 10 | µF |
at TA = 25°C, VIN = VEN = VREF + 0.3V, IL = 0mA, CL = 10µF, CIN = 0.1µF (unless otherwise noted)
The materials used in the manufacture of the REF35 have differing coefficients of thermal expansion, resulting in stress on the device die when the part is heated. Mechanical and thermal stress on the device die can cause the output voltages to shift, degrading the initial accuracy specifications of the product. Reflow soldering is a common cause of this error.
To illustrate this effect, a total of 32 devices
were soldered on one printed circuit board using lead-free solder paste and the paste
manufacturer suggested reflow profile. Figure 7-1 shows the reflow profile. The printed circuit board is comprised of FR4 material. The
board thickness is 1.66mm and the area is
174mm × 135mm.
The reference output voltage is measured before and after the reflow process; Figure 7-2 shows the typical shift. Although all tested units exhibit very low shifts (< 0.03%), higher shifts are also possible depending on the size, thickness, and material of the printed circuit board (PCB). An important note is that the histograms display the typical shift for exposure to a single reflow profile. Exposure to multiple reflows, as is common on PCBs with surface-mount components on both sides, causes additional shifts in the output bias voltage. If the PCB is exposed to multiple reflows, the device must be soldered in the last pass to minimize its exposure to thermal stress.