TPSI3050-Q1 是一款完全集成的隔离式开关驱动器,与外部电源开关结合使用时,可构成完整的隔离式固态继电器 (SSR)。当标称栅极驱动电压为 10 V、峰值拉电流和灌电流为 1.5/3.0A 时,可以选择多种外部电源开关来满足各种应用需求。TPSI3050-Q1 可通过初级侧电源自行产生次级偏置电源,因此无需隔离式次级电源偏置。而且,TPSI3050-Q1 可以有选择性地向外部配套电路供电,以满足不同的应用需求。
TPSI3050-Q1 根据所需的输入引脚数量,支持两种工作模式。在双线模式(通常用于驱动机械继电器)中,控制开关仅需两个引脚,并支持 6.5V 至 48V 的宽工作电压范围。在三线模式中,由外部提供 3V 至 5.5V 的初级侧电源,并通过独立的使能引脚控制开关。TPSI3050S-Q1 具有可实现开关控制的一次性启用功能,且仅在三线模式下可用。此功能对于驱动 SCR 非常有用,通常只需要一个电流脉冲即可触发。
次级侧可为驱动多种电源开关提供 10 V 的浮动稳压电源轨,无需次级偏置电源。具体用途包括为直流应用驱动单个电源开关,或为交流应用驱动两个背靠背电源开关,以及各种类型的 SCR。TPSI3050-Q1 集成式隔离保护功能非常稳健,与传统机械继电器和光耦合器相比,其可靠性更高、功耗更低,且温度范围更宽。
使用从 PXFR 引脚到 VSSP 的外部电阻器在七个功率等级设置中选择一个,以调节 TPSI3050-Q1 的功率传输。此操作可根据应用需求权衡功率损耗与次级侧功耗。
器件型号 | 封装(1) | 封装尺寸(标称值) |
---|---|---|
TPSI3050-Q1 | SOIC 8 引脚 (DWZ) | 7.50mm × 5.85mm |
TPSI3050S-Q1 |
Changes from Revision C (April 2023) to Revision D (August 2023)
Changes from Revision B (December 2022) to Revision C (April 2023)
Changes from Revision A (April 2022) to Revision B (December 2022)
Changes from Revision * (November 2021) to Revision A (April 2022)
PIN | I/O | TYPE(1) | DESCRIPTION | |
---|---|---|---|---|
NO. | NAME | |||
1 | EN | I | — | Active high driver enable |
2 | PXFR | I | — | Power transfer can be adjusted by selecting one of seven power level settings using an external resistor from the PXFR pin to VSSP. In three-wire mode, a given resistor setting sets the duty cycle of the power converter (see Table 8-1) and hence the amount of power transferred. In two-wire mode, a given resistor setting adjusts the current limit of the EN pin (see Table 8-2) and hence the amount of power transferred. |
3 | VDDP | — | P | Power supply for primary side |
4 | VSSP | — | GND | Ground supply for primary side |
5 | VSSS | — | GND | Ground supply for secondary side |
6 | VDDM | — | P | Generated mid supply |
7 | VDDH | — | P | Generated high supply |
8 | VDRV | O | — | Active high driver output |
PARAMETER(1) | MIN | MAX | UNIT | |
---|---|---|---|---|
Primary Side Supply(2) | VDDP | –0.3 | 6 | V |
EN | –0.3 | 60 | V | |
PXFR | –0.3 | 60 | V | |
Secondary Side Supply(3) | VDRV | –0.3 | 12 | V |
VDDH | –0.3 | 12 | V | |
VDDM | –0.3 | 6 | V | |
VDDH – VDDM | –0.3 | 6 | V | |
Junction temperature, TJ | –40 | 150 | °C | |
Storage temperature, Tstg | –65 | 150 | °C |
VALUE | UNIT | ||||
---|---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per AEC Q100-002(1) HBM ESD classification level 2 |
±2000 | V | |
Charged device model (CDM), per AEC Q100-011 CDM ESD classification level C4B |
Corner pins (1, 4, 5, and 8) | ±750 | |||
Other pins | ±500 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
VDDP | Primary side supply voltage three-wire mode(1) | 3.0 | 5.5 | V | |
EN | Enable in two-wire mode(1) | 0 | 48.0 | V | |
Enable in three-wire mode(1) | 0 | 5.5 | V | ||
PXFR | Power transfer control(1) | 0 | 5.5 | V | |
CVDDP | Decoupling capacitance on VDDP and VSSP, two-wire mode(3) | 220 | 330 | nF | |
Decoupling capacitance on VDDP and VSSP, three-wire mode(3) | 0.22 | 20 | µF | ||
CDIV1(2) | Decoupling capacitance across VDDH and VDDM(3) | 0.003 | 40 | µF | |
CDIV2(2) | Decoupling capacitance across VDDM and VSSS(3) | 0.003 | 40 | µF | |
TA | Ambient operating temperature | –40 | 125 | °C | |
TJ | Operating junction temperature | –40 | 150 | °C | |
|ΔVEN/Δt| | EN rise and fall rates, two-wire mode. | 65 | V/ms |
THERMAL METRIC(1) | DEVICE | UNIT | |
---|---|---|---|
DWZ(SOIC) | |||
8 PINS | |||
RϴJA | Junction-to-ambient thermal resistance | 89.3 | °C/W |
RϴJC(top) | Junction-to-case (top) thermal resistance | 40.3 | °C/W |
RΘJB | Junction-to-board thermal resistance | 45.2 | °C/W |
ψJT | Junction-to-top characterization parameter | 10.3 | °C/W |
ΨJB | Junction-to-board characterization parameter | 44.4 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
PD | Maximum power dissipation, VDDP. | VVDDP = 5 V, RPXFR = 20 kΩ, three-wire mode, CVDRV = 100 pF, CDIV1 = CDIV2 = 100 nF, fEN = 1-kHz square wave, VEN = 5 V peak to peak. |
250 | mW | ||
Maximum power dissipation, EN. | RPXFR = 20 kΩ, two-wire mode, CVDRV = 100 pF, CDIV1 = CDIV2 = 100 nF, fEN = 1-kHz square wave, VEN = 48 V peak to peak. |
350 | mW |
PARAMETER | TEST CONDITIONS | SPECIFICATION | UNIT | |
---|---|---|---|---|
GENERAL | ||||
CLR | External clearance(1) | Shortest terminal-to-terminal distance through air | ≥ 8.5 | mm |
CPG | External Creepage(1) | Shortest terminal-to-terminal distance across the package surface | ≥ 8.5 | mm |
DTI | Distance through the insulation | Minimum internal gap (internal clearance) | ≥ 120 | µm |
CTI | Comparative tracking index | DIN EN 60112 (VDE 0303-11); IEC 60112 | ≥ 600 | V |
Material Group | According to IEC 60664-1 | I | ||
Overvoltage category per IEC 60664-1 | Rated mains voltage ≤ 600 VRMS | I-IV | ||
Rated mains voltage ≤ 1000 VRMS | I-III | |||
DIN EN IEC 60747-17 (VDE 0884-17) | ||||
VIORM | Maximum repetitive peak isolation voltage | AC voltage (bipolar) | 1414 | VPK |
VIOWM | Maximum isolation working voltage | AC voltage (sine wave) | 1000 | VRMS |
DC voltage | 1414 | VDC | ||
VIOTM | Maximum transient isolation voltage | VTEST = VIOTM; t = 60 s (qualification test) | 7070 | VPK |
VTEST = 1.2 × VIOTM; t = 1 s (100% production test) | 8484 | VPK | ||
VIMP | Maximum impulse voltage(3) | Tested in air; 1.2/50-µs waveform per IEC 62638-1 |
9230 | VPK |
VIOSM | Maximum surge isolation voltage(3) | Tested in oil (qualification test); 1.2/50-µs waveform per IEC 62638-1 |
12000 | VPK |
qpd | Apparent charge(4) | Method a: After input-output safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM, tm = 10 s. |
≤ 5 | pC |
Method a: After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM, tm = 10 s. |
≤ 5 | |||
Method b1: At routine test (100% production test) and preconditioning (type test), Vini = VIOTM, tini = 1 s; Vpd(m) = 1.875 × VIORM, tm = 1 s. |
≤ 5 | |||
CIO | Barrier capacitance, input to output(5) | VIO = 0.4 × sin (2πft), f = 1 MHz | 3 | pF |
RIO | Insulation resistance, input to output(5) | VIO = 500 V, TA = 25°C | > 1012 | Ω |
VIO = 500 V, 100°C ≤ TA ≤ 125°C | > 1011 | |||
VIO = 500 V at TS = 150°C | > 109 | |||
Pollution degree | 2 | |||
Climatic category | 40/125/21 | |||
UL 1577 | ||||
VISO | Withstand isolation voltage | VTEST = VISO = 5000 VRMS, t = 60 s (qualification test), VTEST = 1.2 × VISO = 6000 VRMS, t = 1 s (100% production test) | 5000 | VRMS |
VDE | UL |
---|---|
Certified according to DIN EN IEC 60747-17 (VDE 0884-17) | Recognized under UL 1577 Component Recognition Program |
Reinforced insulation; Maximum transient isolation voltage, 7071 VPK; Maximum repetitive peak isolation voltage, 1414 VPK; Maximum surge isolation voltage, 12000 VPK | Single protection, 5000 VRMS |
Certificate number: 40040142 | File number: UL-US-2300613-0 |
PARAMETER(1)(2) | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
IS | Safety input, output, or supply current | RθJA = 89.3°C/W, VVDDP = 5.5 V, TJ = 150°C, TA = 25°C, three-wire mode. |
254 | mA | ||
RθJA = 89.3°C/W, VEN = 24 V, TJ = 150°C, TA = 25°C, two-wire mode. |
58 | |||||
RθJA = 89.3°C/W, VEN = 48 V, TJ = 150°C, TA = 25°C, two-wire mode. |
29 | |||||
PS | Safety input, output, or total power | RθJA = 89.3°C/W, TJ = 150°C, TA = 25°C. |
1.4 | W | ||
TS | Maximum safety temperature | 150 | °C |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
COMMON | ||||||
VVDDP_UV_R | VDDP undervoltage threshold rising | VDDP rising | 2.50 | 2.70 | 2.90 | V |
VVDDP_UV_F | VDDP undervoltage threshold falling | VDDP falling | 2.35 | 2.55 | 2.75 | V |
VVDDP_UV_HYS | VDDP undervoltage threshold hysterisis | 75 | mV | |||
TSD | Temperature shutdown | 173 | ℃ | |||
TSDH | Temperature shutdown hysteresis | 32 | ℃ | |||
VVDDH_UV_R | VDDH undervoltage threshold rising | VDDH rising. | 8.3 | 8.6 | 9.0 | V |
VVDDH_UV_F | VDDH undervoltage threshold falling TPSI3050-Q1 only. |
VDDH falling. | 6.3 | 6.6 | 6.9 | V |
VVDDH_UV_F | VDDH undervoltage threshold falling TPSI3050S-Q1 only. One-shot enable mode only available in three-wire operation. |
VDDH falling. | 7.2 | 7.5 | 7.8 | V |
VVDDH_UV_HYS | VDDH undervoltage threshold hysterisis TPSI3050-Q1 only. |
2 | V | |||
VVDDH_UV_HYS | VDDH undervoltage threshold hysterisis TPSI3050S-Q1 only. |
1.1 | V | |||
IQ_VDDH | Internal quiescent current of VDDH supply. | 36 | µA | |||
RDSON_VDRV | Driver on resistance in low state | Force VVDDH = 10 V, sink IVDRV = 50 mA. |
1.7 | Ω | ||
Driver on resistance in high state | Force VVDDH = 10 V, source IVDRV = 50 mA. |
2.5 | Ω | |||
IVDRV_PEAK | VDRV peak output current during rise | VVDDH in steady state, transition EN from low to high, measure peak current. |
1.5 | A | ||
VDRV peak output current during fall | VVDDH in steady state, transition EN from high to low, measure peak current. |
3 | A | |||
CMTI | Common-mode transient immunity | |VCM| = 1000 V | 100 | V/ns | ||
TWO-WIRE MODE | ||||||
VIH_EN | Minimum voltage on EN to be detected as a valid logic high | 6.5 | V | |||
VIL_EN | Maximum voltage on EN to be detected as a valid logic low | 2.0 | V | |||
IEN_START | Enable current at startup | EN = 0 V → 6.5 V | 27 | mA | ||
IEN | Enable current steady state | EN = 6.5 V, RPXFR = 7.32 kΩ, RPXFR ≥100 kΩ or RPXFR ≤1 kΩ, VVDDH in steady state. |
1.9 | mA | ||
EN = 6.5 V, RPXFR = 20 kΩ, VVDDH in steady state. |
6.8 | mA | ||||
VVDDP_RIPPLE | VDDP output voltage ripple | EN = 6.5 V, VVDDH in steady state. | 600 | mV | ||
VVDDH | VDDH output voltage | EN = 6.5 V, VVDDH in steady state. |
9.4 | 10.2 | 11 | V |
VVDRV_H | VDRV output voltage driven high | EN = 6.5 V, VVDDH in steady state, no DC loading. |
9.4 | 10.2 | 11 | V |
VVDRV_L | VDRV output voltage driven low | EN = 6.5 V → 0 V, VVDDH in steady state, sink 10 mA load. |
0.1 | V | ||
VVDDM_IAUX | Average VDDM voltage when sourcing external current | EN = 6.5 V, steady state. RPXFR = 7.32 kΩ, RPXFR ≥ 100 kΩ or RPXFR ≤ 1 kΩ, CDIV1 = CDIV2 = 220 nF, source 0.4 mA from VDDM, measure VDDM voltage. |
4.6 | 5.5 | V | |
EN = 6.5 V, steady state. RPXFR = 20 kΩ, CDIV1 = CDIV2 = 220 nF, source 1.7 mA from VDDM, measure VDDM voltage. |
4.6 | 5.5 | V | |||
THREE-WIRE MODE | ||||||
VIH_EN | Minimum voltage on EN to be detected as a valid logic high. VIH(min) = 0.7 x VVDDP |
VVDDP = 3 V | 2.1 | V | ||
VVDDP = 5.5 V | 3.85 | V | ||||
VIL_EN | Maximum voltage on EN to be detected as a valid logic low | VVDDP = 3 V | 0.9 | V | ||
VVDDP = 5.5 V | 1.65 | V | ||||
IVDDP | VDDP average current in steady state | EN = 3.3 V, VVDDP = 3.3 V, RPXFR = 7.32 kΩ, RPXFR ≥ 100 kΩ or RPXFR ≤ 1 kΩ, VVDDH in steady state, measure IVDDP. |
3.1 | mA | ||
EN = 3.3 V, VVDDP = 3.3 V, RPXFR = 20 kΩ VVDDH in steady state, measure IVDDP. |
26 | |||||
EN = 5 V, VVDDP = 5 V, RPXFR = 7.32 kΩ, RPXFR ≥ 100 kΩ or RPXFR ≤ 1 kΩ, VVDDH in steady state, measure IVDDP. |
4.8 | mA | ||||
EN = 5 V, VVDDP = 5 V, RPXFR = 20 kΩ, VVDDH in steady state, measure IVDDP. |
37 | mA | ||||
VVDDM_IAUX | Average VDDM voltage when sourcing external current | VVDDP = 3.3 V, EN = 0 V, steady state, RPXFR = 7.32 kΩ, CDIV1 = CDIV2 = 220 nF, source 0.4 mA from VDDM, measure VVDDM. |
4.6 | 5.5 | V | |
VVDDP = 5.0 V, EN = 0 V, steady state, RPXFR = 7.32 kΩ, CDIV1 = CDIV2 = 220 nF, source 1.0 mA from VDDM, measure VVDDM. |
4.6 | 5.5 | V | |||
VVDDP = 3.3 V, EN = 0 V, steady state, RPXFR =20 kΩ, CDIV1 = CDIV2 = 220 nF, source 5.5 mA from VDDM, measure VVDDM. |
4.6 | 5.5 | V | |||
VVDDP = 5.0 V, EN = 0 V, steady state, RPXFR = 20 kΩ, CDIV1 = CDIV2 = 220 nF, source 10 mA from VDDM, measure VVDDM. |
4.6 | 5.5 | V | |||
VVDDH | VDDH output voltage | VVDDP = 3.0 V, EN = 3.0 V, VVDDH in steady state. |
9.4 | 10.2 | 11 | V |
VVDRV_H | VDRV output voltage driven high | VVDDP = 3.0 V, EN = 3.0 V, VVDDH in steady state, no DC loading. |
9.4 | 10.2 | 11 | V |
VVDRV_L | VDRV output voltage driven low | VVDDP = 3.0 V, EN = 0 V, VVDDH in steady state, VDRV sinking 10 mA. |
0.1 | V |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
TWO-WIRE MODE | ||||||
tLO_EN | Low time of EN | 5 | µs | |||
tLH_VDDH | Propagation delay time from EN rising to VDDH at 50% level | EN = 0 V → 6.5 V, VVDDH = 5.0 V. |
90 | µs | ||
tLH_VDRV | Propagation delay time from EN rising to VDRV at 90% level | EN = 0 V → 6.5 V, VVDRV = 9.0 V. |
260 | µs | ||
tHL_VDRV | Propagation delay time from EN falling to VDRV at 10% level | EN = 6.5 V → 0 V, VVDRV = 1.0 V. |
2.4 | 3 | µs | |
tR_VDRV | VDRV rise time from EN rising to VDRV from 15% to 85% level | EN = 0 V → 6.5 V, VVDRV = 1.5 V to 8.5 V. |
6 | ns | ||
tF_VDRV | VDRV fall time from EN falling to VDRV from 85% to 15% level | EN = 6.5 V → 0 V, VVDRV = 8.5 V to 1.5 V. |
5 | ns | ||
THREE-WIRE MODE | ||||||
tLO_EN | Low time of EN | VVDDP = 3.3 V, steady state. | 5 | µs | ||
tHI_EN | High time of EN | VVDDP = 3.3V, steady state. | 5 | µs | ||
tHI_VDRV | High time of VDRV using one-shot enable. TPSI3050S-Q1 only. One-shot enable only available in three-wire mode. |
VVDDP = 3.3 V, steady state. | 2.5 | µs | ||
tLH_VDDH | Propagation delay time from VDDP rising to VDDH at 50% level | EN = 0 V, VVDDP = 0 V → 3.3 V at 1 V/µs, VVDDH = 5.0 V. |
74 | µs | ||
tLH_VDRV | Propagation delay time from EN rising to VDRV at 90% level | VVDDP = 3.3 V, VVDDH steady state, EN = 0 V → 3.3 V, VVDRV = 9.0 V. |
3 | 4.5 | µs | |
tHL_VDRV | Propagation delay time from EN falling to VDRV at 10% level | VVDDP = 3.3 V, VVDDH steady state, EN = 3.3 V → 0 V, VVDRV = 1.0 V. |
2.5 | 3 | µs | |
tHL_VDRV_PD | Propagation delay time from VDDP falling to VDRV at 10% level. Timeout mechanism due to loss of power on primary supply. |
EN = 3.3 V, VVDDH steady state, VVDDP = 3.3 V → 0 V at -1 V/µs, VVDRV = 1.0 V. |
100 | µs | ||
tR_VDRV | VDRV rise time from EN rising to VDRV from 15% to 85% level | VVDDP = 3.3 V, VVDDH steady state, EN = 0 V → 3.3 V, VVDRV = 1.5 V to 8.5 V. |
6 | ns | ||
tF_VDRV | VDRV fall time from EN falling to VDRV from 85% to 15% level | VVDDP = 3.3 V, VVDDH steady state, EN = 3.3 V → 0 V, VVDRV = 8.5 V to 1.5 V. |
5 | ns |
Three-wire mode | VDDP = 5.0 V | RPXFR = 7.32 kΩ |
CDIV1,2 = 3.3 nF | CVDRV = 100 pF | TA = 25°C |
Three-wire mode | VDDP = 3.3 V | RPXFR = 7.32 kΩ |
CDIV1 = 2.2 μF | CDIV2 = 2.2 μF |
Two-wire mode | EN = 12 V | RPXFR = 7.32 kΩ |
CDIV1 = 30 nF | CVDRV = 100 pF | TA = 25°C |
CDIV2 = 100 nF |
Three-wire mode | VDDP = 5.0 V | TA = 25°C |
IAUX = 0 mA |
Three-wire mode | VDDP = 5.0 V | TA = 25°C |
Three-wire mode | RPXFR = 20 kΩ | TA = 25°C |
CDIV1 = 470 nF | CDIV2 = 470 nF | CVDDP = 1 μF |
Three-wire mode | VDDP = 5.0 V | RPXFR = 7.32 kΩ |
CDIV1,2 = 3.3 nF | CVDRV = 100 pF | TA = 25°C |
Three-wire mode | VDDP = 3.3 V | RPXFR = 7.32 kΩ |
CDIV1 = 2.2 μF | CDIV2 = 2.2 μF |
Two-wire mode | EN = 12 V | RPXFR = 7.32 kΩ |
CDIV1 = 30 nF | CVDRV = 100 pF | TA = 25°C |
CDIV2 = 100nF |
Three-wire mode | VDDP = 3.3 V | TA = 25°C |
IAUX = 0 mA |
Three-wire mode | VDDP = 5.0 V | TA = 25°C |
Three-wire mode | RPXFR = 11 kΩ | TA = 25°C |
CDIV1 = 470 nF | CDIV2 = 470 nF | CVDDP = 1 μF |