• Menu
  • Product
  • Email
  • PDF
  • Order now
  • TPS736 具有反向电流保护功能的无电容 NMOS、400mA 低压降稳压器

    • ZHCSMC2V September   2003  – September 2024 TPS736

      PRODUCTION DATA  

  • CONTENTS
  • SEARCH
  • TPS736 具有反向电流保护功能的无电容 NMOS、400mA 低压降稳压器
  1.   1
  2. 1 特性
  3. 2 应用
  4. 3 说明
  5. 4 Pin Configuration and Functions
  6. 5 Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Thermal Information
    6. 5.6 Electrical Characteristics
    7. 5.7 Typical Characteristics
  7. 6 Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagrams
    3. 6.3 Feature Description
      1. 6.3.1 Output Noise
      2. 6.3.2 Internal Current Limit
      3. 6.3.3 Enable Pin and Shutdown
      4. 6.3.4 Reverse Current
    4. 6.4 Device Functional Modes
      1. 6.4.1 Normal Operation with 1.7 V ≤ VIN ≤ 5.5 V and VEN ≥ 1.7 V
  8. 7 Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Input and Output Capacitor Requirements
        2. 7.2.2.2 Dropout Voltage
        3. 7.2.2.3 Transient Response
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Power Dissipation
        2. 7.4.1.2 Thermal Protection
        3. 7.4.1.3 Package Mounting
      2. 7.4.2 Layout Examples
  9. 8 Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 Evaluation Modules
        2. 8.1.1.2 Spice Models
      2. 8.1.2 Device Nomenclature
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 接收文档更新通知
    4. 8.4 支持资源
    5. 8.5 Trademarks
    6. 8.6 静电放电警告
    7. 8.7 术语表
  10. 9 Revision History
  11. 10Mechanical, Packaging, and Orderable Information
  12. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

Data Sheet

TPS736 具有反向电流保护功能的无电容 NMOS、400mA 低压降稳压器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

下载最新的英语版本

1 特性

  • 不借助输出电容器或者任何电容值或类型的电容器即可实现稳定
  • 输入电压范围为 1.7V 至 5.5V
  • 超低压降电压:75mV(典型值)
  • 无论是否使用可选输出电容器,均可实现出色的负载瞬态响应
  • NMOS 拓扑可提供低反向漏电流
  • 低噪声:30μVRMS 典型值(10Hz 至 100kHz)
  • 初始精度为 0.5%
  • 整个线路、负载和温度范围内的精度达 1%
  • 关断模式下 IQ 最大值小于 1μA
  • 热关断和指定最小/最大电流限制保护
  • 提供了多个输出电压版本:
    • 1.20V 至 5.0V 固定输出
    • 1.20V 至 5.5V 的可调输出
    • 可提供定制输出

2 应用

  • 便携式、电池供电类设备
  • 适用于开关电源的后置稳压
  • 噪声敏感电路(如 VCO)
  • 适用于 DSP、FPGA、ASIC 和微处理器的负载点调节

3 说明

TPS736 低压降 (LDO) 线性稳压器采用全新的拓扑结构:在电压跟随器配置中使用 NMOS 导通晶体管。这个拓扑结构在使用具有低等效串联电阻 (ESR) 的输出电容器时保持稳定,甚至可实现无电容器运行。该器件还提供高反向阻断(低反向电流)和接地引脚电流(在所有输出电流值范围内几乎保持恒定)。

TPS736 利用先进的 BiCMOS 工艺实现高精度,同时提供超低压降电压和低接地引脚电流。未启用时,电流消耗低于 1μA,非常适合于便携式应用。极低的输出噪声(0.1μF CNR 时为 30μVRMS)使得此器件非常适合为 VCO 供电。该器件受到热关断和折返电流限制的保护。

封装信息
器件型号 封装(1) 封装尺寸(2)
TPS736 DBV(SOT-23,5) 2.9mm × 2.8mm
DCQ(SOT-223,6) 6.5mm × 7.06mm
DRB(VSON,8) 3mm × 3mm
(1) 如需更多信息,请参阅机械、封装和可订购信息。
(2) 封装尺寸(长 × 宽)为标称值,并包括引脚(如适用)。

 

 

TPS736 针对固定电压版本的典型应用电路针对固定电压版本的典型应用电路

4 Pin Configuration and Functions

TPS736 DBV Package,5-Pin SOT-23(Top View)Figure 4-1 DBV Package,5-Pin SOT-23(Top View)
TPS736 DCQ Package,6-Pin SOT-223(Top View)Figure 4-3 DCQ Package,6-Pin SOT-223(Top View)
TPS736 DRB Package,8-Pin VSON(Top View)Figure 4-2 DRB Package,8-Pin VSON(Top View)
Table 4-1 Pin Functions
PIN TYPE DESCRIPTION
NAME NO.
SOT-23 SOT-223 VSON
EN 3 5 5 I Driving the enable pin (EN) high turns on the regulator. Driving this pin low puts the regulator into shutdown mode. See the Enable Pin and Shutdown section for more details. EN can be connected to IN if not used.
FB 4 4 3 I Adjustable-voltage version only. This pin is the input to the control loop error amplifier, and sets the output voltage of the device.
GND 2 3, 6 4, Pad — Ground.
IN 1 1 8 I Input supply.
NR 4 4 3 — Fixed-voltage versions only. Connecting an external capacitor to this noise reduction pin bypasses noise generated by the internal band gap, reducing output noise to very low levels.
OUT 5 2 1 O Output of the regulator. There are no output capacitor requirements for stability.

5 Specifications

5.1 Absolute Maximum Ratings

over operating junction temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage Input, VIN –0.3 6 V
Enable, VEN –0.3 6
Output, VOUT –0.3 5.5
VNR, VFB –0.3 6
Current Maximum output, IOUT Internally limited
Output short-circuit duration Indefinite
Continuous total power dissipation PDISS See Thermal Information
Temperature Operating junction, TJ –55 150 °C
Storage, Tstg –65 150
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

5.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating junction temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN Input supply voltage 1.7 5.5 V
IOUT Output current 0 400 mA
TJ Operating junction temperature –40 125 °C

5.4 Thermal Information

THERMAL METRIC(1) TPS736 M3 new silicon UNIT
DRB (VSON) DCQ (SOT-223)
8 PINS 6 PINS
RθJA Junction-to-ambient thermal resistance 47.7 76 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 68.9 46.6 °C/W
RθJB Junction-to-board thermal resistance 20.6 18.1 °C/W
ψJT Junction-to-top characterization parameter 3.4 8.6 °C/W
ψJB Junction-to-board characterization parameter 20.6 17.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.5 N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

5.5 Thermal Information

THERMAL METRIC(1)(2) TPS736 Legacy silicon(3) UNIT
DRB (VSON) DCQ (SOT-223) DBV (SOT-23)
8 PINS 6 PINS 5 PINS
RθJA Junction-to-ambient thermal resistance(4) 52.8 118.7 221.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance(5) 60.4 64.9 74.9 °C/W
RθJB Junction-to-board thermal resistance(6) 28.4 65.0 51.9 °C/W
ψJT Junction-to-top characterization parameter(7) 2.1 14.0 2.8 °C/W
ψJB Junction-to-board characterization parameter(8) 28.6 63.8 51.1 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance(9) 12.0 N/A N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.
(3) Thermal data for the DRB, DCQ, and DRV packages are derived by thermal simulations based on JEDEC-standard methodology as specified in the JESD51 series. The following assumptions are used in the simulations:
(a) i. DRB: The exposed pad is connected to the PCB ground layer through a 2x2 thermal via array.
 ii. DCQ: The exposed pad is connected to the PCB ground layer through a 3x2 thermal via array.
 iii. DBV: There is no exposed pad with the DBV package.
(b) i. DRB: The top and bottom copper layers are assumed to have a 20% thermal conductivity of copper representing a 20% copper coverage.
 ii. DCQ: Each of top and bottom copper layers has a dedicated pattern for 20% copper coverage.
 iii. DBV: The top and bottom copper layers are assumed to have a 20% thermal conductivity of copper representing a 20% copper coverage.
(c) These data were generated with only a single device at the center of a JEDEC high-K (2s2p) board with 3in × 3in copper area. To understand the effects of the copper area on thermal performance, see the Power Dissipation section of this data sheet.
(4) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(5) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the top of the package. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(6) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(7) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data to obtain θJA using a procedure described in JESD51-2a (sections 6 and 7).
(8) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data to obtain θJA using a procedure described in JESD51-2a (sections 6 and 7).
(9) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

5.6 Electrical Characteristics

Over operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) +  0.5V(1), IOUT = 10mA, VEN = 1.7V , and COUT = 0.1μF , unless otherwise noted. Typical values are at TJ = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input voltage range(1)(2) 1.7 5.5 V
VFB Internal reference (TPS73601) TJ = 25°C  1.198 1.204 1.210 V
VOUT Output voltage range (TPS73601)(3) VFB 5.5 - VDO V
Accuracy(1)(4) Nominal  TJ = 25°C –0.5 0.5 %
over VIN, IOUT, and T   VOUT + 0.5V ≤ VIN ≤ 5.5V; 10mA ≤ IOUT ≤ 400mA  –1 ±0.5 1
ΔVOUT(ΔVIN) Line regulation (1) VOUT(NOM) + 0.5V ≤ VIN ≤ 5.5V 0.01 %/V
ΔVOUT(ΔIOUT) Load regulation 1mA ≤ IOUT ≤ 400mA 0.002 %/mA
10mA ≤ IOUT ≤ 400mA 0.0005
VDO Dropout voltage(5) (VIN = VOUT(NOM) - 0.1V) IOUT = 400mA 75 200 mV
ZO(do) Output impedance in dropout 1.7V ≤ VIN ≤ VOUT + VDO 0.25 Ω
ICL Output current limit VOUT = 0.9 × VOUT(nom)  legacy silicon 400 650 800 mA
3.6V ≤ VIN ≤ 4.2V, 0℃ ≤ TJ ≤ 70℃ 500 800
VOUT = 0.9 × VOUT(nom)  new silicon, M3 suffix 500 800
ISC Short-circuit current VOUT = 0V  450 mA
IREV Reverse leakage current(6) (-IIN) VEN ≤ 0.5V, 0V ≤ VIN ≤ VOUT  0.1 10 µA
IGND Ground pin current IOUT = 10mA (IQ)  400 550 µA
IGND Ground pin current IOUT = 400mA   800 1000 µA
ISHDN Shutdown current (IGND) VEN ≤ 0.5V, VOUT ≤ VIN ≤ 5.5V, –40°C ≤ TJ ≤ 100℃, legacy silicon      0.02 1 µA
VEN ≤ 0.5V, VOUT ≤ VIN ≤ 5.5V, new silicon, M3 suffix 0.02 1
IFB Feedback pin current (TPS73601) 0.1 0.3 µA
PSRR Power-supply rejection ratio (ripple rejection) f = 100Hz, IOUT = 400mA 58 dB
f = 10kHz, IOUT = 400mA 37
VN Output noise voltage, BW = 10Hz to 100kHz COUT = 10µF, no CNR 27 x VOUT µVRMS
COUT = 10µF, CNR =0.01µF 8.5 x VOUT
tSTR Startup time VOUT = 3V, RL = 30Ω, COUT = 1μF, CNR = 0.01μF 600 µs
VEN(high) EN pin high (enabled) 1.7 VIN V
VEN(low) EN pin low (shutdown) 0 0.5 V
IEN(high) Enable pin current (enabled) VEN = 5.5V   0.02 0.1 µA
TSD Thermal shutdown temperature Shutdown, temperature increasing 160 °C
Reset, temperature decreasing 140
TJ Operating junction temperature –40 125 ℃
(1) Minimum VIN = VOUT + VDO or 1.7V, whichever is greater.
(2) For VOUT(nom) < 1.6V, when VIN ≤ 1.6V, the output locks to VIN and may result in a damaging over-voltage condition on the output. To avoid this situation, disable the device before powering down VIN. (Legacy silicon only)
(3) TPS73601 is tested at VOUT = 2.5V.
(4) Tolerance of external resistors not included in this specification.
(5) VDO is not measured for output versions with VOUT(nom) < 1.8V, because minimum VIN = 1.7V.
(6) Fixed-voltage versions only; refer to Application Information section for more information.

5.7 Typical Characteristics

For all voltage versions, at TJ = 25°C, VIN = VOUT(nom) + 0.5 V, IOUT = 10 mA, VEN = 1.7 V, and COUT = 0.1 μF, unless otherwise noted.

TPS736 Load
                        Regulation
Legacy silicon
Figure 5-1 Load Regulation
TPS736 Line
                        Regulation
Legacy silicon
Figure 5-3 Line Regulation
TPS736 Dropout Voltage vs Output Current
Legacy silicon
Figure 5-5 Dropout Voltage vs Output Current
TPS736 Dropout Voltage vs Temperature
Legacy silicon
Figure 5-7 Dropout Voltage vs Temperature
TPS736 Output Voltage Accuracy Histogram
Legacy silicon
Figure 5-9 Output Voltage Accuracy Histogram
TPS736 Ground Pin Current vs Output Current
Legacy silicon
Figure 5-11 Ground Pin Current vs Output Current
TPS736 Ground Pin Current vs Temperature
Legacy silicon
Figure 5-13 Ground Pin Current vs Temperature
TPS736 Ground Pin Current In Shutdown vs Temperature
Legacy silicon
Figure 5-15 Ground Pin Current In Shutdown vs Temperature
TPS736 Current Limit vs VOUT (Foldback)
Legacy silicon
Figure 5-17 Current Limit vs VOUT (Foldback)
TPS736 Current Limit vs VIN
Legacy silicon
Figure 5-19 Current Limit vs VIN
TPS736 Current Limit vs Temperature
Legacy silicon
Figure 5-21 Current Limit vs Temperature
TPS736 PSRR
                        (Ripple Rejection) vs Frequency
Legacy silicon
Figure 5-23 PSRR (Ripple Rejection) vs Frequency
TPS736 PSRR
                        (Ripple Rejection) vs VIN – VOUT
Legacy silicon
Figure 5-25 PSRR (Ripple Rejection) vs VIN – VOUT
TPS736 Noise
                        Spectral Density CNR = 0 μF
Legacy silicon
Figure 5-27 Noise Spectral Density CNR = 0 μF
TPS736 Noise
                        Spectral Density CNR = 0.01 μF
Legacy silicon
Figure 5-29 Noise Spectral Density CNR = 0.01 μF
TPS736 RMS
                        Noise Voltage vs COUT
Legacy silicon
Figure 5-31 RMS Noise Voltage vs COUT
TPS736 RMS
                        Noise Voltage vs CNR
Legacy silicon
Figure 5-33 RMS Noise Voltage vs CNR
TPS736 TPS73633 Load Transient Response
Legacy silicon
Figure 5-35 TPS73633 Load Transient Response
TPS736 TPS73633 Line Transient Response
Legacy silicon
Figure 5-37 TPS73633 Line Transient Response
TPS736 TPS73633 Turn-On Response
Legacy silicon
Figure 5-39 TPS73633 Turn-On Response
TPS736 TPS73633 Turn-Off Response
Legacy silicon
Figure 5-41 TPS73633 Turn-Off Response
TPS736 TPS73633 Power-Up, Power-Down
Legacy silicon
Figure 5-43 TPS73633 Power-Up, Power-Down
TPS736 IENABLE vs Temperature
Legacy silicon
Figure 5-45 IENABLE vs Temperature
TPS736 TPS73601 RMS Noise Voltage vs CFB
Legacy silicon
Figure 5-47 TPS73601 RMS Noise Voltage vs CFB
TPS736 TPS73601 IFB vs Temperature
Legacy silicon
Figure 5-49 TPS73601 IFB vs Temperature
TPS736 TPS73601 Load Transient, Adjustable Version
Legacy silicon
Figure 5-51 TPS73601 Load Transient, Adjustable Version
TPS736 TPS73601 Line Transient, Adjustable Version
Legacy silicon
Figure 5-53 TPS73601 Line Transient, Adjustable Version
TPS736 Load
                        Regulation
New silicon, M3 suffix
Figure 5-2 Load Regulation
TPS736 Line
                        Regulation
New silicon, M3 suffix
Figure 5-4 Line Regulation
TPS736 Dropout Voltage vs Output Current
New silicon, M3 suffix
Figure 5-6 Dropout Voltage vs Output Current
TPS736 Dropout Voltage vs Temperature
New silicon, M3 suffix
Figure 5-8 Dropout Voltage vs Temperature
TPS736 Output Voltage Drift Histogram
Legacy silicon
Figure 5-10 Output Voltage Drift Histogram
TPS736 Ground Pin Current vs Output Current
New silicon, M3 suffix
Figure 5-12 Ground Pin Current vs Output Current
TPS736 Ground Pin Current vs Temperature
New silicon, M3 suffix
Figure 5-14 Ground Pin Current vs Temperature
TPS736 Ground Pin Current in
                        Shutdown vs Temperature
New silicon, M3 suffix
Figure 5-16 Ground Pin Current in Shutdown vs Temperature
TPS736 Current Limit vs VOUT (Foldback)
New silicon, M3 suffix
Figure 5-18 Current Limit vs VOUT (Foldback)
TPS736 Current Limit vs VIN
New silicon, M3 suffix
Figure 5-20 Current Limit vs VIN
TPS736 Current Limit vs Temperature
New silicon, M3 suffix
Figure 5-22 Current Limit vs Temperature
TPS736 PSRR
                        (Ripple Rejection) vs Frequency
New silicon, M3 suffix
Figure 5-24 PSRR (Ripple Rejection) vs Frequency
TPS736 PSRR
                        (Ripple Rejection) vs VIN – VOUT
New silicon, M3 suffix
Figure 5-26 PSRR (Ripple Rejection) vs VIN – VOUT
TPS736 Noise
                        Spectral Density CNR = 0 μF
New silicon, M3 suffix
Figure 5-28 Noise Spectral Density CNR = 0 μF
TPS736 Noise
                        Spectral Density CNR = 0.01 μF
New silicon, M3 suffix
Figure 5-30 Noise Spectral Density CNR = 0.01 μF
TPS736 RMS
                        Noise Voltage vs COUT
New silicon, M3 suffix
Figure 5-32 RMS Noise Voltage vs COUT
TPS736 RMS
                        Noise Voltage vs CNR
New silicon, M3 suffix
Figure 5-34 RMS Noise Voltage vs CNR
TPS736 TPS73633 Load Transient Response
New silicon, M3 suffix
Figure 5-36 TPS73633 Load Transient Response
TPS736 TPS73633 Line Transient Response
New silicon, M3 suffix
Figure 5-38 TPS73633 Line Transient Response
TPS736 TPS73633 Turn-On Response
New silicon, M3 suffix
Figure 5-40 TPS73633 Turn-On Response
TPS736 TPS73633 Turn-Off Response
New silicon, M3 suffix
Figure 5-42 TPS73633 Turn-Off Response
TPS736 TPS73633 Power-Up, Power-Down
New silicon, M3 suffix
Figure 5-44 TPS73633 Power-Up, Power-Down
TPS736 IENABLE vs Temperature
New silicon, M3 suffix
Figure 5-46 IENABLE vs Temperature
TPS736 TPS73601 RMS Noise Voltage vs CFB
New silicon, M3 suffix
Figure 5-48 TPS73601 RMS Noise Voltage vs CFB
TPS736 TPS73601 IFB vs Temperature
New silicon, M3 suffix
Figure 5-50 TPS73601 IFB vs Temperature
TPS736 TPS73601 Load Transient, Adjustable Version
New silicon, M3 suffix
Figure 5-52 TPS73601 Load Transient, Adjustable Version
TPS736 TPS73601 Line Transient, Adjustable Version
New silicon, M3 suffix
Figure 5-54 TPS73601 Line Transient, Adjustable Version

6 Detailed Description

6.1 Overview

The TPS736 low-dropout linear regulator operates down to an input voltage of 1.7 V and supports output voltages down to 1.2 V while sourcing up to 400 mA of load current. This linear regulator uses an NMOS pass transistor with an integrated 4-MHz charge pump to provide a dropout voltage of less than 200 mV at full load current. This unique architecture also permits stable regulation over a wide range of output capacitors. In fact, the TPS736 device does not require any output capacitor for stability. The increased insensitivity to the output capacitor value and type makes this linear regulator an ideal choice when powering a load where the effective capacitance is unknown.

The TPS736 also features a noise reduction (NR) pin that allows for additional reduction of the output noise. With a noise reduction capacitor of 0.01 µF connected from the NR pin to GND, the TPS73615 output noise can be as low as 12.75 µVRMS. The low noise output featured by the TPS736 makes the device well-suited for powering VCOs or any other noise sensitive load.

6.2 Functional Block Diagrams

TPS736 Fixed-Voltage VersionFigure 6-1 Fixed-Voltage Version
TPS736 Adjustable-Voltage Version Figure 6-2 Adjustable-Voltage Version

6.3 Feature Description

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale