• Menu
  • Product
  • Email
  • PDF
  • Order now
  • 符合 CDCDB2000 DB2000QL 标准的 20 输出时钟缓冲器,适用于 PCIe 第 1 代到第 5 代

    • ZHCSKG8B November   2019  – October 2024 CDCDB2000

      PRODUCTION DATA  

  • CONTENTS
  • SEARCH
  • 符合 CDCDB2000 DB2000QL 标准的 20 输出时钟缓冲器,适用于 PCIe 第 1 代到第 5 代
  1.   1
  2. 1 特性
  3. 2 应用
  4. 3 说明
  5. 4 Pin Configuration and Functions
  6. 5 Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. 6 Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Output Enable Control
      2. 6.3.2 SMBus
        1. 6.3.2.1 SMBus Address Assignment
      3. 6.3.3 Side-Band Interface
    4. 6.4 Device Functional Modes
      1. 6.4.1 CKPWRGD_PD# Function
      2. 6.4.2 OE[12:5]# and SMBus Output Enables
    5. 6.5 Programming
      1. 6.5.1 SMBus
      2. 6.5.2 SBI
  8. 7 Register Maps
    1. 7.1 CDCDB2000 Registers
  9. 8 Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Output Enable Control Method
        2. 8.2.2.2 SMBus Address
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Examples
  10. 9 Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 TICS Pro
    2. 9.2 接收文档更新通知
    3. 9.3 支持资源
    4. 9.4 Trademarks
    5. 9.5 静电放电警告
    6. 9.6 术语表
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
  13. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

Data Sheet

符合 CDCDB2000 DB2000QL 标准的 20 输出时钟缓冲器,适用于 PCIe 第 1 代到第 5 代

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

下载最新的英语版本

1 特性

  • 具有集成 85Ω 输出终端的 20 LP-HCSL 输出
  • 8 种硬件输出使能 (OE#) 控制
  • 使用 DB2000QL 滤波器之后的附加相位抖动:
    < 0.08ps rms
  • 支持 PCIe 第 4 代和第 5 代常见时钟 (CC) 频率和单独基准 (IR) 架构
    • 与展频技术兼容
  • 周期间抖动:< 50ps
  • 输出到输出偏斜:< 50ps
  • 输入到输出延迟:< 3ns
  • 3.3V 内核和 IO 电源电压
  • 硬件控制的低功耗模式 (PD#)
  • 用于在 PD# 模式下进行输出控制的边带接口 (SBI)
  • 9 个可选 SMBus 地址
  • 功耗:< 600mW
  • 6mm × 6mm,80 引脚 TLGA/GQFN 封装

2 应用

  • 微服务器和塔式服务器
  • 存储区域网络和主机总线适配器卡
  • 网络连接存储
  • 硬件加速器

3 说明

CDCDB2000 是一款符合 DB2000QL 标准的 20 输出 LP-HCSL 时钟缓冲器,能够为 PCIe 第 1 代到第 5 代、QuickPath Interconnect (QPI)、UPI、SAS 和 SATA 接口分配参考时钟。使用 SMBus、SBI 和 8 输出使能引脚,可以单独配置和控制所有 20 个输出。CDCDB2000 是一个 DB2000QL 衍生缓冲器,达到或超过 DB2000QL 规格中的系统参数。CDCDB2000 采用具有 80 个引线的 6mm × 6mm TLGA/GQFN 封装。

器件信息
器件型号封装(1)封装尺寸(标称值)
CDCDB2000TLGA (80)6.00mm × 6.00mm
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。
CDCDB2000 CDCDB2000 系统图CDCDB2000 系统图

4 Pin Configuration and Functions

CDCDB2000 CDCDB2000 NPP Package80-Pin TLGATop ViewFigure 4-1 CDCDB2000 NPP Package80-Pin TLGATop View
Table 4-1 Pin Functions
PIN I/O TYPE(2) DESCRIPTION
NAME(1) NO.
INPUT CLOCK
CLKIN_P G1 I LP-HCSL differential clock input. Typically connected directly to the differential output of clock source.
CLKIN_N H1 I
OUTPUT CLOCKS
CK0_P J1 O LP-HCSL differential clock output of channel 0. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect.
CK0_N K1 O
CK1_P L1 O LP-HCSL differential clock output of channel 1. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect.
CK1_N M1 O
CK2_P M2 O LP-HCSL differential clock output of channel 2. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect.
CK2_N M3 O
CK3_P M4 O LP-HCSL differential clock output of channel 3. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect.
CK3_N M5 O
CK4_P M7 O LP-HCSL differential clock output of channel 4. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect.
CK4_N M8 O
CK5_P M9 O LP-HCSL differential clock output of channel 5. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect, and pin L8 (OE5# / DATA) is recommended to be either in DATA mode or pulled high.
CK5_N M10 O
CK6_P M11 O LP-HCSL differential clock output of channel 6. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect, and pin L10 (OE6# / CLK) is recommended to be either in CLK mode or pulled high.
CK6_N M12 O
CK7_P L12 O LP-HCSL differential clock output of channel 7. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect, and pin K11 (OE7#) is recommended to be pulled high to disable channel 7 output.
CK7_N K12 O
CK8_P J12 O LP-HCSL differential clock output of channel 8. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect, and pin H11 (OE8#) is recommended to be pulled high to disable channel 8 output.
CK8_N H12 O
CK9_P G12 O LP-HCSL differential clock output of channel 9. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect, and pin E12 (OE9#) is recommended to be pulled high to disable channel 9 output.
CK9_N F12 O
CK10_P D12 O LP-HCSL differential clock output of channel 10. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect, and pin E11 (OE10# / SHFT_LD#) is recommended to be either in SHFT_LD# mode or pulled high.
CK10_N C12 O
CK11_P B12 O LP-HCSL differential clock output of channel 11. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect, and pin C11 (OE11#) is recommended to be pulled high to disable channel 11 output.
CK11_N A12 O
CK12_P A11 O LP-HCSL differential clock output of channel 12. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect, and pin B10 (OE12#) is recommended to be pulled high to disable channel 12 output.
CK12_N A10 O
CK13_P A9 O LP-HCSL differential clock output of channel 13. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect.
CK13_N A8 O
CK14_P A7 O LP-HCSL differential clock output of channel 14. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect.
CK14_N A6 O
CK15_P A5 O LP-HCSL differential clock output of channel 15. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect.
CK15_N A4 O
CK16_P A3 O LP-HCSL differential clock output of channel 16. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect.
CK16_N A2 O
CK17_P A1 O LP-HCSL differential clock output of channel 17. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect.
CK17_N B1 O
CK18_P C1 O LP-HCSL differential clock output of channel 18. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect.
CK18_N D1 O
CK19_P E1 O LP-HCSL differential clock output of channel 19. Typically connected directly to PCIe differential clock input. If unused, the pins can be left no connect.
CK19_N F1 O
MANAGEMENT AND CONTROL
CKPWRGD_PD# M6 I, PD Clock Power Good and Power Down multi-function input pin with internal 120-kΩ pulldown. Typically connected to GPIO of microcontroller. If unused, the pin can be left no connect. On first high transition, PWRGD samples the latched SADR[1:0] inputs and starts up device. After PWRGD has been asserted high for the first time, the pin becomes a PD# pin and it controls power-down mode:
LOW: Power-down mode, all output channels tri-stated.
HIGH: Normal operation mode.
OE5#
DATA
L8 I, PD Output enable for channel 5 and Side-Band Interface data multi-function pin with internal 120-kΩ pulldown. Typically connected to GPIO of microcontroller. If both modes are unused, the pin can be left no connect. When pin E2 = LOW, OE5# mode. Output enable for channel 5, active low.
LOW: enable output channel 5.
HIGH: disable output channel 5. When pin E2 = HIGH, DATA mode. Side-Band Interface data pin.
OE6#
CLK
L10 I, PD Output enable for channel 6 and Side-Band Interface clock multi-function pin with internal 120-kΩ pulldown. Typically connected to GPIO of microcontroller. If both modes are unused, the pin can be left no connect. When pin E2 = LOW, OE6# mode. Output Enable for channel 6, active low.
LOW: enable output channel 6.
HIGH: disable output channel 6. When pin E2 = HIGH, CLK mode. Side-Band interface clock pin.
OE7# K11 I, PD Output Enable for channel 7 with internal 120-kΩ pulldown, active low. Typically connected to GPIO of microcontroller. If unused, the pin can be left no connect.
LOW: enable output channel 7.
HIGH: disable output channel 7.
OE8# H11 I, PD Output Enable for channel 8, with internal 120-kΩ pulldown, active low. Typically connected to GPIO of microcontroller. If unused, the pin can be left no connect.
LOW: enable output channel 8.
HIGH: disable output channel 8.
OE9# E12 I, PD Output Enable for channel 9, with internal 120-kΩ pulldown, active low. Typically connected to GPIO of microcontroller. If unused, the pin can be left no connect.
LOW: enable output channel 9.
HIGH: disable output channel 9.
OE10#
SHFT_LD#
E11 I, PD Output enable for channel 10 and Side-Band Interface load shift registers multi-function pin with internal 120-kΩ pulldown. Typically connected to GPIO of microcontroller. If both modes are unused, the pin can be left no connect. When pin E2 = LOW, OE10# mode. Output Enable for channel 10, active low.
LOW: enable output channel 10.
HIGH: disable output channel 10. When pin E2 = HIGH, SHFT_LD# mode. Side-Band Interface load shift registers pin.
LOW: disable Side-Band Interface shift register.
HIGH: enable Side-Band Interface shift register.
A falling edge transfers the Side-Band shift register contents to the output register.
OE11# C11 I, PD Output Enable for channel 11 with internal 120-kΩ pulldown, active low. Typically connected to GPIO of microcontroller. If unused, the pin can be left no connect.
LOW: enable output channel 11.
HIGH: disable output channel 11.
OE12# B10 I, PD Output Enable for channel 12 with internal 120-kΩ pulldown, active low. Typically connected to GPIO of microcontroller. If unused, the pin can be left no connect.
LOW: enable output channel 12.
HIGH: disable output channel 12.
SBEN E2 I, S, PD Side-Band Interface enable input with internal 120-kΩ pulldown. Typically connected to GPIO of microcontroller. If unused, the pin can be left no connect. This pin disables the Output Enable (OE#) pins when asserted.
LOW: OE# pins and SMBus enable bits control outputs, Side-Band interface disabled.
HIGH: Side-Band Interface controls outputs, OE# pins and SMBus enable bits are disabled.
SMBUS AND SMBUS ADDRESS
SADR0 B4 I, S, PU / PD SMBus address strap bit[0]. This is a 3-level input that is decoded in conjunction with pin B8 to set SMBus address. It has internal 120-kΩ pullup / pulldown network biasing to VDD/2 when no connect.
For a high-level input configuration, the pin should be pulled up to 3.3-V VDD through an external pullup resistor from 1k to 5k with 5% tolerance.
For a low-level input configuration input, the pin should be pulled down to ground through an external pulldown resistor from 1k to 5k with 5% tolerance.
For a mid-level input configuration, the pin should be left floating and not connected to VDD or ground.
SADR1 B8 I, S, PU / PD SMBus address strap bit[1]. This is a 3-level input that is decoded in conjunction with pin B4 to set SMBus address. It has internal 120-kΩ pullup / pulldown network biasing to VDD/2 when no connect.
For a high-level input configuration, the pin should be pulled up to 3.3-V VDD through an external pullup resistor from 1k to 5k with 5% tolerance.
For a low-level input configuration, the pin should be pulled down to ground through an external pulldown resistor from 1k to 5k with 5% tolerance.
For a mid-level input configuration, the pin should be left floating and not connected to VDD or ground.
SMBCLK L5 I Clock pin of SMBus interface. Typically pulled up to 3.3-V VDD using external pullup resistor. The recommended pullup resistor value is > 8.5k.
SMBDAT L4 I / O Data pin of SMBus interface. Typically pulled up to 3.3-V VDD using external pullup resistor. The recommended pullup resistor value is > 8.5k.
SUPPLY VOLTAGE AND GROUND
GND DAP G Ground. Connect ground pad to system ground.
VDD B2, B6, B11, L2, L11 P Power supply input for LP-HCSL clock output channels. Connect to 3.3-V power supply rail with decoupling capacitor to GND. Place a 0.1-µF capacitor close to each supply pin between power supply and ground.
VDD_A H2 P Power supply input for differential input clock. Connect to 3.3-V power supply rail with decoupling capacitor to GND. Place a 0.1-µF capacitor close to pin.
NO CONNECT
NC B3, B5, B7, B9, C2, D2, D11, F2, F11, G2, G11, J2, J11, K2, L3, L6, L7, L9, — Do not connect to GND or VDD.
(1) The “#” symbol at the end of a pin name indicates that the active state occurs when the signal is at a low voltage level. When “#” is not present, the signal is active high.
(2) The definitions below define the I/O type for each pin.
  • I = Input
  • O = Output
  • I / O = Input / Output
  • PU / PD = Internal 120-kΩ Pullup / Pulldown network biasing to VDD/2
  • PD = Internal 120-kΩ Pulldown
  • S = Hardware Configuration Pin
  • P = Power Supply
  • G = Ground

5 Specifications

5.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1)
MINMAXUNIT
VDD, VDD_APower supply voltage–0.33.6V
VINIO input voltageGNDVDD + 0.5V
TJJunction temperature125°C
TstgStorage temperature–65150°C
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale