• Menu
  • Product
  • Email
  • PDF
  • Order now
  • MSP430FR604x、MSP430FR504x 16MHz MCU 高达 64KB FRAM,12 位高速 8-MSPS Σ-Δ ADC 和集成传感器 AFE

    • ZHCSJA6B January   2019  – December 2021 MSP430FR5041 , MSP430FR5043 , MSP430FR50431 , MSP430FR6041 , MSP430FR6043 , MSP430FR60431

      PRODUCTION DATA  

  • CONTENTS
  • SEARCH
  • MSP430FR604x、MSP430FR504x 16MHz MCU 高达 64KB FRAM,12 位高速 8-MSPS Σ-Δ ADC 和集成传感器 AFE
  1. 1 特性
  2. 2 应用
  3. 3 说明
  4. 4 功能方框图
  5. 5 Revision History
  6. 6 Device Comparison
    1. 6.1 Related Products
  7. 7 Terminal Configuration and Functions
    1. 7.1 Pin Diagrams
    2. 7.2 Pin Attributes
    3. 7.3 Signal Descriptions
    4. 7.4 Pin Multiplexing
    5. 7.5 Buffer Type
    6. 7.6 Connection of Unused Pins
  8. 8 Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Active Mode Supply Current Into VCC Excluding External Current
    5. 8.5  Typical Characteristics, Active Mode Supply Currents
    6. 8.6  Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current
    7. 8.7  Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current
    8. 8.8  Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current
    9. 8.9  Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current
    10. 8.10 Typical Characteristics, Low-Power Mode Supply Currents
    11. 8.11 Current Consumption per Module
    12. 8.12 Thermal Resistance Characteristics
    13. 8.13 Timing and Switching Characteristics
      1. 8.13.1  Power Supply Sequencing
        1. 8.13.1.1 Brownout and Device Reset Power Ramp Requirements
        2. 8.13.1.2 SVS
      2. 8.13.2  Reset Timing
        1. 8.13.2.1 Reset Input
      3. 8.13.3  Clock Specifications
        1. 8.13.3.1 Low-Frequency Crystal Oscillator, LFXT
        2. 8.13.3.2 High-Frequency Crystal Oscillator, HFXT
        3. 8.13.3.3 DCO
        4. 8.13.3.4 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
        5. 8.13.3.5 Module Oscillator (MODOSC)
      4. 8.13.4  Wake-up Characteristics
        1. 8.13.4.1 Wake-up Times From Low-Power Modes and Reset
        2. 8.13.4.2 Typical Wake-up Charges
        3. 8.13.4.3 Typical Characteristics, Average LPM Currents vs Wake-up Frequency
      5. 8.13.5  Digital I/Os
        1. 8.13.5.1 Digital Inputs
        2. 8.13.5.2 Digital Outputs
        3. 8.13.5.3 Typical Characteristics, Digital Outputs
      6. 8.13.6  LEA
        1. 8.13.6.1 Low-Energy Accelerator (LEA) Performance
      7. 8.13.7  Timer_A and Timer_B
        1. 8.13.7.1 Timer_A
        2. 8.13.7.2 Timer_B
      8. 8.13.8  eUSCI
        1. 8.13.8.1 eUSCI (UART Mode) Clock Frequency
        2. 8.13.8.2 eUSCI (UART Mode) Switching Characteristics
        3. 8.13.8.3 eUSCI (SPI Master Mode) Clock Frequency
        4. 8.13.8.4 eUSCI (SPI Master Mode) Switching Characteristics
        5. 8.13.8.5 eUSCI (SPI Master Mode) Timing Diagrams
        6. 8.13.8.6 eUSCI (SPI Slave Mode) Switching Characteristics
        7. 8.13.8.7 eUSCI (SPI Slave Mode) Timing Diagrams
        8. 8.13.8.8 eUSCI (I2C Mode) Switching Characteristics
        9. 8.13.8.9 eUSCI (SPI Slave Mode) Timing Diagrams
      9. 8.13.9  Segment LCD Controller
        1. 8.13.9.1 LCD_C Recommended Operating Conditions
        2. 8.13.9.2 LCD_C Electrical Characteristics
      10. 8.13.10 ADC12_B
        1. 8.13.10.1 12-Bit ADC, Power Supply and Input Range Conditions
        2. 8.13.10.2 12-Bit ADC, Timing Parameters
        3. 8.13.10.3 12-Bit ADC, Linearity Parameters
        4. 8.13.10.4 12-Bit ADC, Dynamic Performance With External Reference
        5. 8.13.10.5 12-Bit ADC, Dynamic Performance With Internal Reference
        6. 8.13.10.6 12-Bit ADC, Temperature Sensor and Built-In V1/2
        7. 8.13.10.7 12-Bit ADC, External Reference
        8. 8.13.10.8 Temperature Sensor Typical Characteristics
      11. 8.13.11 Reference
        1. 8.13.11.1 REF, Built-In Reference
      12. 8.13.12 Comparator
        1. 8.13.12.1 Comparator_E
      13. 8.13.13 FRAM
        1. 8.13.13.1 FRAM Memory
      14. 8.13.14 USS
        1. 8.13.14.1 USS Recommended Operating Conditions
        2. 8.13.14.2 USS LDO
        3. 8.13.14.3 USSXTAL
        4. 8.13.14.4 USS HSPLL
        5. 8.13.14.5 USS SDHS
        6. 8.13.14.6 USS PHY Output Stage
        7. 8.13.14.7 USS PHY Input Stage, Multiplexer
        8. 8.13.14.8 USS_PGA
        9. 8.13.14.9 USS Bias Voltage Generator
      15. 8.13.15 Emulation and Debug
        1. 8.13.15.1 JTAG and Spy-Bi-Wire Interface
  9. 9 Detailed Description
    1. 9.1  Overview
    2. 9.2  CPU
    3. 9.3  Ultrasonic Sensing Solution (USS_A)
    4. 9.4  Low-Energy Accelerator (LEA) for Signal Processing
    5. 9.5  Operating Modes
      1. 9.5.1 Peripherals in Low-Power Modes
      2. 9.5.2 Idle Currents of Peripherals in LPM3 and LPM4
    6. 9.6  Interrupt Vector Table and Signatures
    7. 9.7  Bootloader (BSL)
    8. 9.8  JTAG Operation
      1. 9.8.1 JTAG Standard Interface
      2. 9.8.2 Spy-Bi-Wire Interface
    9. 9.9  FRAM Controller A (FRCTL_A)
    10. 9.10 RAM
    11. 9.11 Tiny RAM
    12. 9.12 Memory Protection Unit (MPU) Including IP Encapsulation
    13. 9.13 Peripherals
      1. 9.13.1  Digital I/O
      2. 9.13.2  Oscillator and Clock System (CS)
      3. 9.13.3  Power-Management Module (PMM)
      4. 9.13.4  Hardware Multiplier (MPY)
      5. 9.13.5  Real-Time Clock (RTC_C)
      6. 9.13.6  Measurement Test Interface (MTIF)
      7. 9.13.7  Watchdog Timer (WDT_A)
      8. 9.13.8  System Module (SYS)
      9. 9.13.9  DMA Controller
      10. 9.13.10 Enhanced Universal Serial Communication Interface (eUSCI)
      11. 9.13.11 TA0, TA1, and TA4
      12. 9.13.12 TA2 and TA3
      13. 9.13.13 TB0
      14. 9.13.14 ADC12_B
      15. 9.13.15 USS_A
      16. 9.13.16 Comparator_E
      17. 9.13.17 CRC16
      18. 9.13.18 CRC32
      19. 9.13.19 AES256 Accelerator
      20. 9.13.20 True Random Seed
      21. 9.13.21 Shared Reference (REF)
      22. 9.13.22 LCD_C
      23. 9.13.23 Embedded Emulation
        1. 9.13.23.1 Embedded Emulation Module (EEM) (S Version)
        2. 9.13.23.2 EnergyTrace++ Technology
    14. 9.14 Input/Output Diagrams
      1. 9.14.1  Port Function Select Registers (PySEL1 , PySEL0)
      2. 9.14.2  Port P1 (P1.0 and P1.1) Input/Output With Schmitt Trigger
      3. 9.14.3  Port P1 (P1.2 to P1.5) Input/Output With Schmitt Trigger
      4. 9.14.4  Port P1 (P1.6 to P1.7) Input/Output With Schmitt Trigger
      5. 9.14.5  Port P2 (P2.0 to P2.1) Input/Output With Schmitt Trigger
      6. 9.14.6  Port P2 (P2.2 to P2.3) Input/Output With Schmitt Trigger
      7. 9.14.7  Port P2 (P2.4 to P2.5) Input/Output With Schmitt Trigger
      8. 9.14.8  Port P2 (P2.6 to P2.7) Input/Output With Schmitt Trigger
      9. 9.14.9  Port P3 (P3.0) Input/Output With Schmitt Trigger
      10. 9.14.10 Port P3 (P3.1) Input/Output With Schmitt Trigger
      11. 9.14.11 Port P3 (P3.2) Input/Output With Schmitt Trigger
      12. 9.14.12 Port P3 (P3.3) Input/Output With Schmitt Trigger
      13. 9.14.13 Port P3 (P3.4 to P3.5) Input/Output With Schmitt Trigger
      14. 9.14.14 Port P3 (P3.6 to P3.7) Input/Output With Schmitt Trigger
      15. 9.14.15 Port P4 (P4.0) Input/Output With Schmitt Trigger
      16. 9.14.16 Port P4 (P4.1 to P4.7) Input/Output With Schmitt Trigger
      17. 9.14.17 Port P5 (P5.0 to P5.7) Input/Output With Schmitt Trigger
      18. 9.14.18 Port P6 (P6.0) Input/Output With Schmitt Trigger
      19. 9.14.19 Port P6 (P6.1 to P6.2) Input/Output With Schmitt Trigger
      20. 9.14.20 Port P6 (P6.3) Input/Output With Schmitt Trigger
      21. 9.14.21 Port P6 (P6.4) Input/Output With Schmitt Trigger
      22. 9.14.22 Port P6 (P6.5 and P6.7) Input/Output With Schmitt Trigger
      23. 9.14.23 Port P7 (P7.0) Input/Output With Schmitt Trigger
      24. 9.14.24 Port PJ (PJ.0 to PJ.3) JTAG Pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger
      25. 9.14.25 Port PJ (PJ.4 and PJ.5) Input/Output With Schmitt Trigger
      26. 9.14.26 Port PJ (PJ.6 and PJ.7) Input/Output With Schmitt Trigger
    15. 9.15 Device Descriptors (TLV)
    16. 9.16 Memory Map
      1. 9.16.1 Peripheral File Map
    17. 9.17 Identification
      1. 9.17.1 Revision Identification
      2. 9.17.2 Device Identification
      3. 9.17.3 JTAG Identification
  10. 10Applications, Implementation, and Layout
    1. 10.1 Device Connection and Layout Fundamentals
      1. 10.1.1  Power Supply and Bulk Capacitors
      2. 10.1.2  External Oscillator (HFXT and LFXT)
      3. 10.1.3  USS Oscillator (USSXT)
      4. 10.1.4  Transducer Connection to the USS Module
      5. 10.1.5  Charge Pump Control of Input Multiplexer
      6. 10.1.6  JTAG
      7. 10.1.7  Reset
      8. 10.1.8  Unused Pins
      9. 10.1.9  General Layout Recommendations
      10. 10.1.10 Do's and Don'ts
    2. 10.2 Peripheral- and Interface-Specific Design Information
      1. 10.2.1 ADC12_B Peripheral
        1. 10.2.1.1 Partial Schematic
        2. 10.2.1.2 Design Requirements
        3. 10.2.1.3 Detailed Design Procedure
        4. 10.2.1.4 Layout Guidelines
      2. 10.2.2 LCD_C Peripheral
        1. 10.2.2.1 Partial Schematic
        2. 10.2.2.2 Design Requirements
        3. 10.2.2.3 Detailed Design Procedure
        4. 10.2.2.4 Layout Guidelines
  11. 11Device and Documentation Support
    1. 11.1 Getting Started
    2. 11.2 Device Nomenclature
    3. 11.3 Tools and Software
    4. 11.4 Documentation Support
    5. 11.5 Support Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 术语表
    9. 11.9 Export Control Notice
  12. 12Mechanical, Packaging, and Orderable Information
  13. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

MSP430FR604x、MSP430FR504x 16MHz MCU 高达 64KB FRAM,12 位高速 8-MSPS Σ-Δ ADC 和集成传感器 AFE

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 功耗超低的一流超声波水流和气流测量
    • 水
      • 在低流速到高流速的情况下以及工作温度范围内的差分飞行时间 (dToF) 精度为 ±12.5ps
      • 可在 500:1 的宽动态范围内实现 ±1% 精度
      • 在直径为 25mm 的管道上,能够测量的最大流速为 8800 升/小时(40 加仑/分钟)
      • 能够检测的最小流速小于 1 升/小时(0.005 加仑/分钟)
      • 高精度时间测量分辨率小于 5ps
      • 在每秒获取一组结果的条件下总体电流消耗大约为 3µA
      • 能够支持直径为 15mm 至 1000mm 的宽管道尺寸
    • 气体
      • 在低流速到高流速的情况下以及工作温度范围内的差分飞行时间 (dToF) 精度为 ±250ps
      • 可在流速高达 12000 升/小时的条件下实现 ±1% 的精度,具有 200:1 的宽动态范围
      • 能够测量的流速大于 25000 升/小时
      • 能够检测的最小流速小于 3 升/小时
      • 高精度时间测量分辨率小于 100ps
      • 在每秒获取一组结果的条件下总体电流消耗大约为 20µA
  • 符合并超出 ISO4064、OIML R49、EN 14236 和 EN 1434 精度标准
  • 能够直接与标准超声波传感器(高达 2.5MHz)连接
  • 集成模拟前端 – 超声波传感解决方案 (USS_A),包括
    • 用于在各种频率下生成多音调脉冲的可编程脉冲发生器 (PPG)
    • 用于控制输入和输出通道且具有低阻抗输出驱动器 (4Ω) 的集成 PHY
    • 具有高达 8Msps 输出数据速率的高性能高速 12 位模数转换器 (SDHS)
    • 具有 –6.5dB 至 30.8dB 增益的可编程增益放大器 (PGA)
    • 输出范围为 68MHz 至 80MHz 的高性能 PLL
  • 计量测试接口 (MTIF)
    • 脉冲发生器和脉冲计数器
    • 脉冲率高达 1024 次脉冲/秒 (p/s)
    • 计数容量高达 65535(16 位)
    • 在 LPM3.5 下以 200nA(典型值)运行
  • 低功耗加速器 (LEA)
    • 独立于 CPU 运行
    • 与 CPU 共享 8KB RAM
    • 高效的 256 点复数 FFT:比 Arm®Cortex®-M0+ 内核最多快 40 倍
  • 嵌入式微控制器
    • 时钟频率高达 16MHz 的 16 位精简指令集计算机 (RISC) 架构
    • 宽电源电压范围:1.8V 至 3.6V (1)
  • 优化的超低功耗模式
    • 激活模式:大约 120 µA/MHz
    • 具有实时时钟 (RTC) 的待机模式 (LPM3.5):450nA (2)
    • 关断 (LPM4.5):30nA
  • 铁电随机存取存储器 (FRAM)
    • 容量高达 64KB 的非易失性存储器
    • 超低功耗写入
    • 以 125ns/字(4ms 内写入 64KB)的速度快速写入
    • 统一的存储器 = 程序 + 数据 + 存储都处于同一存储空间
    • 耐写次数达 1015 次
    • 抗辐射和非磁性
  • 智能数字外设
    • 32 位硬件乘法器 (MPY)
    • 6 通道内部 DMA
    • 带有日历和报警功能的 RTC
    • 6 个 16 位计时器,每个计时器具有多达 7 个捕捉/比较寄存器
    • 32 位和 16 位循环冗余校验 (CRC)
  • 高性能模拟
    • 12 通道模拟比较器
    • 12 位 ADC,具有窗口比较器、内部基准和采样保持功能以及多达 8 条外部输入通道
    • 具有高达 248 段对比度控制的集成 LCD 驱动器
  • 多功能输入/输出端口
    • 所有引脚均支持电容式触控功能,无需外部组件
    • 可按位、字节和字进行访问(成对访问)
    • 所有端口均可从 LPM 进行边沿可选唤醒
    • 所有端口均具有可设定的上拉电阻或下拉电阻
  • 代码安全性和加密
    • 128 位或 256 位 AES 安全加密和解密协处理器
    • 用于随机数生成算法的随机数种子
    • IP 封装可保护存储器免遭外部访问
    • FRAM 可提供固有安全性优势
  • 增强型串行通信
    • 多达 4 个 eUSCI_A 串行通信端口
      • 支持自动波特率检测的 UART
      • IrDA 编码和解码
    • 多达 2 个 eUSCI_B 串行通信端口
      • 支持多从器件寻址的 I2C
    • 硬件 UART 或 I2C 引导加载程序 (BSL)
  • 灵活的时钟系统
    • 具有 10 个可选厂家调整频率的固定频率数控振荡器 (DCO)
    • 低功耗低频内部时钟源 (VLO)
    • 32kHz 晶振 (LFXT)
    • 高频晶振 (HFXT)
  • 开发工具和软件
    • 超声波感应设计中心图形用户界面
    • 超声波感应软件库
    • EVM430-FR6043 燃气表评估模块板
    • 用于 80 引脚封装的 MSP-TS430PN80C 目标插座板
    • 采用 EnergyTrace++ 技术的免费专业开发环境
    • 用于 MSP 微控制器的 MSP430Ware™
  • 器件比较汇总了可用的器件型号和封装选项
1. 最低电源电压受限于 SVS 电平(请参阅 SVS 规格)
2. RTC 由 3.7pF 晶振计时。

2 应用

  • 超声波智能水表
  • 超声波智能燃气表
  • 超声波智能热量计
  • 流量变送器

3 说明

德州仪器 (TI) MSP430FR604x 和 MSP430FR504x SoC 属于 MSP430 超声波传感微控制器 (MCU) 系列,且功能强大、集成度高,专为各种工业应用而设计:

  • 高分辨率超声波液位感应
  • 液体浓度感应
  • 高分辨率风速计
  • 超声波表面感应
  • 超声波泄漏检测
  • 氧浓度感应
  • 超声波智能燃气表
  • 超声波智能水表

这些 MCU 提供集成的超声波传感解决方案 (USS_A) 模块,该模块可针对多种流速提供高精度测量。USS 模块高度集成,需要的外部组件极少,因而有助于实现超低功耗计量并降低系统成本。

MSP430FR604x 和 MSP430FR504x 器件采用低功耗加速器 (LEA),可实现基于 ADC 的高速信号采集以及后续优化数字信号处理,为电池供电型计量应用提供了一款理想的超低功耗、高精度计量解决方案。

USS_A 模块包括可编程脉冲发生器 (PPG) 和具有低阻抗输出驱动器的物理接口 (PHY),以实现最佳传感器激励和准确的阻抗匹配,从而在零流量漂移 (ZFD) 方面达到最佳效果。USS_A 模块还包含可编程增益放大器 (PGA) 和高速 12 位 8Msps Σ-Δ ADC (SDHS),便于通过行业标准超声波传感器实现精确的信号采集。

此外,MSP430FR604x 和 MSP430FR504x 还集成了其他外设,可提高系统在计量方面的集成度。它具有计量测试接口 (MTIF) 模块,能够通过脉冲生成来指示仪表测量的流量。它还具有片上 8 通道多路复用器 LCD 驱动器(仅限 MSP430FR604x)、实时时钟 (RTC)、12 位 SAR ADC、模拟比较器、高级加密 (AES256) 模块和循环冗余校验 (CRC) 模块。

MSP430FR604x 和 MSP430FR504x MCU 由广泛的硬件和软件生态系统提供支持,随附参考设计和代码示例,便于您快速开始设计。开发套件包括 MSP-TS430PN80C 80 引脚目标开发板和 EVM430-FR6043 超声波气流计 EVM。TI 还提供免费软件,包括超声波感应设计中心、超声波感应软件库和 MSP430Ware™ 软件。

MSP430FR604x 和 MSP430FR504x MCU 系列集成了 TI 的 FRAM(铁电 RAM)和功耗整体超低 MSP 系统架构,从而使系统设计人员能够在降低能耗的同时提升性能。FRAM 技术兼有 RAM 的低功耗快速写入、灵活性、耐用性和闪存非易失性等特性。

有关完整的模块说明,请参阅《MSP430FR58xx、MSP430FR59xx 和 MSP430FR6xx 系列用户指南》。

器件信息
器件型号(1) 封装(2) 封装尺寸(3)
MSP430FR6043IPN LQFP (80) 12mm x 12mm
MSP430FR60431IPN LQFP (80) 12mm x 12mm
MSP430FR6041IPN LQFP (80) 12mm x 12mm
MSP430FR5043IPM LQFP (64) 10mm x 10mm
MSP430FR50431IPM LQFP (64) 10mm x 10mm
MSP430FR5041IPM LQFP (64) 10mm x 10mm
MSP430FR5043IRGC VQFN (64) 9mm x 9mm
MSP430FR50431IRGC VQFN (64) 9mm x 9mm
MSP430FR5041IRGC VQFN (64) 9mm x 9mm
(1) 如需获得所有可用器件的最新部件、封装和订购信息,请参阅封装选项附录(Section 12)或浏览 TI 网站 www.ti.com.cn。
(2) 有关提供的所有器件变型的对比,请参见Section 6。
(3) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参阅机械数据(Section 12中)。

4 功能方框图

图 4-1 给出了功能方框图。

GUID-A9A97CAE-E246-465A-A6E6-FAC778907510-low.gif

注意:该器件具备 12KB RAM,其中 8KB RAM 与 LEA 子系统共享。

图 4-1 功能方框图

5 Revision History

Changed from revision A to revision B

Changes from December 2, 2020 to December 1, 2021

  • 更改了文档标题Go
  • 在说明 中添加了指向应用资源的链接Go
  • Updated Section 11.5, Support Resources Go

Changed from initial release to revision A

Changes from January 19, 2019 to December 1, 2020

  • 更新了整个文档中的表格、图和交叉参考的编号格式。Go
  • Added notes to Section 8.12, Thermal Resistance Characteristics Go
  • Added the note that begins "XT1CLK and VLOCLK can be active during LPM4..." in Section 9.5, Operating Modes Go
  • Added the INTERRUPT VECTOR REGISTER column, moved register names from the INTERRUPT FLAG column, and corrected interrupt flag names as necessary in Table 9-4, Interrupt Sources, Flags, Vectors, and Signatures Go
  • Corrected the interrupt flag bit numbers for ports P4 to P7 (changed PxIFG.2 to PxIFG.7) in Table 9-4, Interrupt Sources, Flags, and Vectors Go
  • Corrected a typo in the PySEL0.x column header in Table 9-24, I/O Function Selection Go
  • Corrected the address range for "Main: interrupt vectors" in Table 9-52, Memory Organization Go

6 Device Comparison

Table 6-1 summarizes the available family members.

Table 6-1 Device Comparison
DEVICE(1) FRAM
(KB)(2)
SRAM
(KB)
CLOCK SYSTEM LEA LCD MTIF ADC12_B (Channels) Comp_E (Channels) Timer_A(3) Timer_B(4) eUSCI_A(5) eUSCI_B(6) AES BSL I/O PACKAGE
MSP430FR6043 64 12 DCO
HFXT
LFXT
Yes Yes Yes 8 external, 2 internal 12 3, 3(7)
2, 2,2(8)
7 4 2 Yes UART 57 80 PN (LQFP)
MSP430FR60431 64 12 DCO
HFXT
LFXT
Yes Yes Yes 8 external, 2 internal 12 3, 3(7)
2, 2,2(8)
7 4 2 Yes I2C 57 80 PN (LQFP)
MSP430FR6041 32 12 DCO
HFXT
LFXT
Yes Yes Yes 8 external, 2 internal 12 3, 3(7)
2, 2,2(8)
7 4 2 Yes UART 57 80 PN (LQFP)
MSP430FR5043 64 12 DCO
HFXT
LFXT
Yes No Yes 7 external, 2 internal 11 3, 3(7)
2, 2,2(8)
7 4 2 Yes UART 44 64 PM (LQFP)
64 RGC (VQFN)
MSP430FR50431 64 12 DCO
HFXT
LFXT
Yes No Yes 7 external, 2 internal 11 3, 3(7)
2, 2,2(8)
7 4 2 Yes I2C 44 64 PM (LQFP)
64 RGC (VQFN)
MSP430FR5041 32 12 DCO
HFXT
LFXT
Yes No Yes 7 external, 2 internal 11 3, 3(7)
2, 2,2(8)
7 4 2 Yes UART 44 64 PM (LQFP)
64 RGC (VQFN)
(1) For the most current package and ordering information, see the Package Option Addendum in Section 12, or see the TI website at www.ti.com.
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.
(3) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 capture/compare registers and PWM output generators and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.
(4) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 capture/compare registers and PWM output generators and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.
(5) eUSCI_A supports UART with automatic baud-rate detection, IrDA encode and decode, and SPI.
(6) eUSCI_B supports I2C with multiple slave addresses and SPI.
(7) Timers TA0 and TA1 provide internal and external capture/compare inputs and internal and external PWM outputs.
(8) Timers TA2 and TA3 provide only internal capture/compare inputs and only internal PWM outputs (if any) whereas Timer TA4 provides internal, external capture/compare inputs and internal, external PWM outputs (Note: TA4 in the RGZ package provide only internal capture/compare inputs and only internal PWM outputs.).

6.1 Related Products

For information about other devices in this family of products or related products, see the following links.

TI 16-bit and 32-bit microcontrollers

High-performance, low-power solutions to enable the autonomous future

Products for MSP430 ultra-low-power sensing & measurement MCUs

One platform. One ecosystem. Endless possibilities.

Reference designs

Find reference designs leveraging the best in TI technology to solve your system-level challenges

7 Terminal Configuration and Functions

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale