与之前的同类产品相比,UCC28064A 交错式 PFC 控制器具有更高的功率额定值。该器件采用了 Natural Interleaving™ 技术。两个通道均作为主通道运行(即没有从通道),而且这两个通道同步至同一频率。这种方法可以实现更快的响应、出色的相间导通时间匹配以及每个通道的转换模式。该器件具有突发模式功能,可获得较高的轻负载效率。由于具有突发模式,因此在轻负载运行期间无需关闭 PFC 即可实现待机功率目标。而且,由于具有该模式,在与 UCC25630x LLC 控制器和 UCC24624 同步整流器控制器配对使用时,该器件无需使用辅助反激式转换器。
器件型号 | 封装 | 封装尺寸(标称值) |
---|---|---|
UCC28064A | SOIC (16) | 9.90mm x 3.91mm |
扩展的系统级保护 特性 包括输入欠压和压降恢复、输出过压、开环、过载、软启动、相位故障检测以及热关断保护。附加的失效防护过压保护 (OVP) 特性可防止到一个中间电压的短路,如果没有检测到此短路的话,有可能导致非常严重的器件故障。该器件具有高级非线性增益,可针对线路和负载瞬态事件提供快速而平滑的响应。特殊的线路压降处理可避免严重的电流中断。在突发模式期间,不发生切换时偏置电流会大幅降低,从而提高了待机性能。
PIN | I/O | DESCRIPTION | |
---|---|---|---|
NAME | NO. | ||
AGND | 6 | - | Analog ground |
BRST | 9 | I | Burst mode threshold input |
COMP | 5 | O | Error amplifier output |
CS | 10 | I | Current sense input |
GDA | 14 | O | Phase A gate driver output |
GDB | 11 | O | Phase B gate driver output |
HVSEN | 8 | I | High voltage output sense |
PGND | 13 | - | Power ground |
PHB | 4 | I | Phase B enable disable threshold input |
TSET | 3 | I | Timing set |
VCC | 12 | - | Bias supply input |
VINAC | 7 | I | Input AC voltage sense |
VSENSE | 2 | I | Error amplifier input |
VREF | 15 | O | Voltage reference output |
ZCDA | 16 | I | Phase A zero current detection input |
ZCDB | 1 | I | Phase B zero current detection input |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
Continuous input voltage | VCC(1) | −0.5 | 21 | V | |
COMP(2), PHB, HVSEN(3), VINAC(3), VSENSE(3), TSET, BRST | –0.5 | 7 | |||
ZCDA, ZCDB | –0.5 | 4 | |||
CS(4) | –0.5 | 3 | |||
GDA, GDB(5) | –0.5 | VCC + 0.3 | |||
Continuous input current | VCC | 20 | mA | ||
ZCDA, ZCDB | ±5 | ||||
GDA, GDB(5) | –25 | 25 | |||
VREF | –2 | ||||
Peak input current | CS | –30 | mA | ||
TJ | Operating junction temperature | –40 | 125 | °C | |
TSOL | Soldering 10 s | 260 | °C | ||
Tstg | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±500 |
MIN | MAX | UNIT | |
---|---|---|---|
VCC input voltage from a low-impedance source | 14 | 21 | V |
VCC input current from a high-impedance source | 8 | 18 | mA |
VINAC input voltage | 0 | 6 | V |
VREF load current | 0 | –2 | mA |
ZCDA, ZCDB series resistor | 20 | 80 | kΩ |
TSET resistor to program PWM on-time | 66.5 | 400 | kΩ |
HVSEN input voltage | 0.8 | 4.5 | V |
PHB Phase management threshold voltage | 0 | 2 | V |
BRST Burst mode threshold voltage | 0 | VPHB - 0.6 V | V |
THERMAL METRIC | UCC28064A | UNIT | |
---|---|---|---|
SOIC (D) | |||
16 PINS | |||
RθJA | Junction-to-ambient thermal resistance(4) | 91.6 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance(3) | 52.1 | °C/W |
RθJB | Junction-to-board thermal resistance(2) | 48.6 | °C/W |
ψJT | Junction-to-top characterization parameter(1) | 14.9 | °C/W |
ψJB | Junction-to-board characterization parameter(5) | 48.3 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VCC BIAS SUPPLY | ||||||
VCCSHUNT | VCC shunt voltage(1) | IVCC = 10 mA | 22 | 24 | 26 | V |
IVCC(UVLO) | VCC current, UVLO | VCC = 9.3 V prior to turn on | 125 | 200 | µA | |
IVCC(stby) | VCC current, disabled | VSENSE = 0 V | 150 | 210 | µA | |
IVCC(on) | VCC current, enabled | VSENSE = 2 V | 5 | 8 | mA | |
IVCC(BURST) | VCC current burst mode no switching | VCOMP < VBURST | 650 | 850 | µA | |
UNDERVOLTAGE LOCKOUT (UVLO) | ||||||
VCCON | VCC turnon threshold | VCC rising | 9.45 | 10.35 | 11.1 | V |
VCCOFF | VCC turnoff threshold | VCC falling | 8.8 | 9.6 | 10.7 | V |
ΔVCCUVLO | UVLO Hysteresis | VCCON - VCCOFF | 0.68 | 0.8 | 0.9 | V |
REFERENCE | ||||||
VREF | VREF output voltage, no load | IVREF = 0 mA | 5.82 | 6.00 | 6.18 | V |
ΔVREF_LOAD | VREF change with load | 0 mA ≤ IVREF ≤ −2 mA | -6 | -1 | mV | |
ΔVREF_VCC | VREF change with VCC | 12 V ≤ VCC ≤ 20 V | 2 | 10 | mV | |
ERROR AMPLIFIER | ||||||
VSENSEreg25 | VSENSE input regulation voltage | TA = 25°C | 5.85 | 6 | 6.15 | V |
VSENSEreg | VSENSE input regulation voltage | 5.82 | 6 | 6.18 | V | |
IVSENSE | VSENSE input bias current | In regulation | 50 | 100 | 150 | nA |
VENAB | VSENSE enable threshold, rising | 1.15 | 1.25 | 1.35 | V | |
VSENSE enable hysteresis | 0.02 | 0.07 | 0.15 | V | ||
VCOMP_CLMP | COMP high voltage, clamped | VSENSE = VSENSEreg – 0.3 V | 4.70 | 4.95 | 5.10 | V |
VCOMP_SAT | COMP low voltage, saturated | VSENSE = VSENSEreg + 0.3 V | 0.03 | 0.125 | V | |
gM1 | VSENSE to COMP transconductance, small signal | 0.99(VSENSEreg) < VSENSE < 1.01(VSENSEreg), COMP = 3 V | 40 | 55 | 70 | µS |
VSENSE_gM2_SINK | VSENSE high-going threshold to enable COMP large signal gain, percent | Relative to VSENSEreg, COMP = 3 V | 3.25 | 5 | 6.75 | % |
VSENSE_gM2_SOURCE | VSENSE low-going threshold to enable COMP large signal gain, percent | Relative to VSENSEreg, COMP = 3 V | –6.75 | −5 | −3.25 | % |
gM2_SOURCE | VSENSE to COMP transconductance, large signal | VSENSE = VSENSEreg – 0.4 V , COMP = 3 V | 210 | 290 | 370 | µS |
gM2_SINK | VSENSE to COMP transconductance, large signal | VSENSE = VSENSEreg + 0.4 V, COMP = 3 V | 210 | 290 | 370 | µS |
ICOMP_SOURCE_MAX | COMP maximum source current | VSENSE = 5 V, COMP = 3 V | -170 | -125 | -80 | µA |
RCOMPDCHG | COMP discharge resistance | HVSEN = 5.2 V, COMP = 3 V | 1.6 | 2 | 2.4 | kΩ |
IDODCHG | COMP discharge current during Dropout | VSENSE = 5 V, VINAC = 0.3 V, COMP = 1V | 3.2 | 4 | 4.8 | µA |
VLOW_OV | VSENSE overvoltage threshold, rising | Relative to VSENSEreg | 6.5 | 8 | 9.5 | % |
ΔVLOW_OV_HYST | VSENSE overvoltage hysteresis | Relative to VLOW_OV | -3 | -2 | -1.5 | % |
VHIGH_OV | VSENSE 2nd overvoltage threshold, rising | Relative to VSENSEreg | 9.3 | 11 | 12.7 | % |
SOFT START | ||||||
VSSTHR | COMP Soft-Start threshold, falling | VSENSE = 1.5 V | 10 | 23 | 35 | mV |
ISS,FAST | COMP Soft-Start current, fast | SS-state, VENAB < VSENSE < VREF/2 | -170 | -125 | -80 | µA |
ISS,SLOW | COMP Soft-Start current, slow | SS-state, VREF/2 < VSENSE < 0.88VREF | -20 | -16 | -11.5 | µA |
KEOSS | VSENSE End-of-Soft-Start threshold factor | Percent of VSENSEreg | 96.5% | 98.3% | 99.8% | |
OUTPUT MONITORING | ||||||
VHV_OV_FLT | HVSEN threshold to overvoltage fault | HVSEN rising | 4.64 | 4.87 | 5.1 | V |
VHV_OV_CLR | HVSEN threshold to overvoltage clear | HVSEN falling | 4.45 | 4.67 | 4.8 | V |
GATE DRIVE | ||||||
VGDx_H | GDA, GDB output voltage, high | IGDA, IGDB = −100 mA | 10.7 | 12.4 | 15 | V |
RGDx_H | GDA, GDB on-resistance, high | IGDA, IGDB = −100 mA | 8.8 | 16.7 | Ω | |
VGDx_L | GDA, GDB output voltage, low | IGDA, IGDB = 100 mA | 0.18 | 0.32 | V | |
RGDx_L | GDA, GDB on-resistance, low | IGDA, IGDB = 100 mA | 2 | 3.2 | Ω | |
VGDx_H_VCCH | GDA, GDB output voltage high, clamped | VCC = 20 V, IGDA, IGDB = −5 mA | 11.8 | 13.5 | 15 | V |
VGDx_H_VCCL | GDA, GDB output voltage high, low VCC | VCC = 12 V, IGDA, IGDB = −5 mA | 10 | 10.5 | 11.5 | V |
VGDx_L_UVLO | GDA, GDB output voltage, UVLO | VCC = 3.0 V, IGDA, IGDB = 2.5 mA | 100 | 200 | mV | |
tGDx_RISE | Rise time | 1 V to 9 V, CLOAD = 1 nF | 18 | 30 | ns | |
tGDx_FALL | Fall time | 9 V to 1 V, CLOAD = 1 nF | 12 | 25 | ns | |
ZERO CURRENT DETECTOR | ||||||
VZCDx_TRIG | ZCDA, ZCDB voltage threshold, falling | 0.8 | 1 | 1.2 | V | |
VZCDx_ARM | ZCDA, ZCDB voltage threshold, rising | 1.5 | 1.7 | 1.9 | V | |
VZCDx_CLMP_H | ZCDA, ZCDB clamp, high | IZCDA = +2 mA, IZCDB = +2 mA | 2.6 | 3 | 3.4 | V |
VZCDx_CLMP_L | ZCDA, ZCDB clamp, low | IZCDA = −2 mA, IZCDB = −2 mA | -0.40 | −0.2 | 0 | V |
IZCDx | ZCDA, ZCDB input bias current | ZCDA = 1.4 V, ZCDB = 1.4 V | -0.5 | 0 | 0.5 | µA |
tZCDx_DEL | ZCDA, ZCDB delay to GDA, GDB outputs | From ZCDx input falling to 1 V to respective gate drive output rising 10% | 50 | 100 | ns | |
tZCDx_BLNK | ZCDA, ZCDB blanking time | From GDx rising to GDx falling | 100 | ns | ||
CURRENT SENSE | ||||||
ICS | CS input bias current, dual-phase | At rising threshold | -200 | -166 | -120 | µA |
VCS_DPh | CS current-limit rising threshold, dual-phase | -0.22 | -0.2 | -0.18 | V | |
VCS_SPh | CS current-limit rising threshold, single-phase | PHB = 6 V | -0.183 | -0.166 | -0.149 | V |
VCS_RST | CS current-limit reset falling threshold | -0.025 | –0.015 | -0.002 | V | |
tCS_DEL | CS current-limit response time | From CS exceeding threshold−0.05 V to GDx dropping 10% | 60 | 100 | ns | |
tCS_BLNK | CS blanking time | From GDx rising and falling edges | 100 | ns | ||
VINAC INPUT | ||||||
IVINAC | VINAC input bias current, above brownout | VINAC = 2 V | -0.5 | 0 | 0.5 | µA |
VBOTHR | VINAC brownout threshold | 1.33 | 1.45 | 1.6 | V | |
tBODLY | VINAC brownout filter time | VINAC below the brownout threshold for the brownout filter time | 500 | 640 | 810 | ms |
tBORST | VINAC brownout reset time | VINAC above the brownout threshold for the brownout reset time after Brown out event | 300 | 450 | 600 | ms |
IBOHYS | VINAC brownout hysteresis current | VINAC = 1 V for > tBODLY | 1.6 | 1.95 | 2.25 | µA |
VDODET | VINAC dropout detection threshold | VINAC falling | 0.310 | 0.35 | 0.38 | V |
tDODLY | VINAC dropout filter time | VINAC below the dropout detection threshold for the dropout filter time | 3.5 | 5 | 7 | ms |
VDOCLR | VINAC dropout clear threshold | VINAC rising | 0.67 | 0.71 | 0.75 | V |
PULSE-WIDTH MODULATOR | ||||||
KTL | On-time factor, two phases operating, low VINAC_PK | VINAC=1.6V, VCOMP=4V(2) | 3.0 | 4.15 | 5.3 | µs/V |
KTH | On-time factor, two phases operating, high VINAC_PK | VINAC= 5V, VCOMP = 4V(2) | 0.36 | 0.43 | 0.5 | µs/V |
KTSL | On-time factor, single-phase operating, low VINAC_PK | VINAC=1.6V, VCOMP = 1.5V, PHB = 2V(2) | 6.1 | 8.3 | 10.5 | µs/V |
KTSH | On-time factor, single-phase operating, high VINAC_PK | VINAC= 5V, VCOMP = 1.5V, PHB=2V(2) | 0.73 | 0.87 | 1.01 | µs/V |
tZCC_I | Zero-crossing distortion correction additional on time | COMP = 0.5 V, VINAC = 0.1 V | 15 | 23.6 | 32.2 | µs |
tZCC_II | Zero-crossing distortion correction additional on time | COMP = 0.5 V, VINAC = 1.6 V | 0.7 | 1.1 | 1.5 | µs |
tMIN | Minimum Switching period | RTSET = 133 kΩ, VCOMP = 0.3, VINAC = 3 V(2) | 1.9 | 2.7 | 3.5 | µs |
tSTART | PWM restart time | ZCDA = ZCDB = 2 V(3) | 160 | 210 | 265 | µs |
tONMAX_L | Maximum FET on time at low VINAC | VSENSE = 5.8 V, VINAC=1.6V | 15.1 | 20.4 | 26.2 | µs |
tONMAX_H | Maximum FET on time at High VINAC | VSENSE = 5.8 V, VINAC= 5V | 1.5 | 2 | 2.4 | µs |
tONMAX_SL | Maximum FET on time at low VINAC, Single Phase operation. | VSENSE = 5.8V, VINAC=1.6V, PHB = 6V | 11.8 | 16 | 20.2 | µs |
tONMAX_SH | Maximum FET on time at hgih VINAC, single phase operation | VSENSE = 5.8V, VINAC=5 V, PHB = 6V | 1.37 | 1.66 | 1.95 | µs |
ΔtONMAX_AB_L | Phase B to phase A on-time matching error | VSENSE = 5.8 V, VINAC=1.6V | –6 | 6 | % | |
ΔtONMAX_AB_H | Phase B to phase A on-time matching error | VSENSE = 5.8 V, VINAC= 5V | -6 | 6 | % | |
ΔVBRST_HYST | BRST Hysteresis, COMP voltage rising | BRST = 1V, VINAC = 1.5 V | 30 | 50 | 70 | mV |
ΔVPHB_HYST | PHB Hysteresis COMP voltage rising | PHB = 3V, VINAC = 2.5 V | 80 | 150 | 210 | mV |
IPHB_RANGE | PHB pin sourced current when high input voltage | VINAC = 3.75V, PHB = 2V | 2 | 3 | 4.1 | µA |
IBRST_RANGE | BRST pin sourced current when high input voltage | VINAC = 3.75V, BRST = 2V | 2 | 3 | 4.1 | µA |
VVINAC_RANGE_THF | VINAC range falling threshold | PHB = 2V, BRST = 2V | 2.95 | 3.15 | 3.3 | V |
ΔVINAC_RANGE | VINAC range Hysteresis at rising edge | PHB = 2V, BRST=2V | 300 | 350 | 400 | mV |
THERMAL SHUTDOWN | ||||||
TJ | Thermal shutdown temperature | Temperature rising(4) | 160 | °C | ||
TJ | Thermal restart temperature | Temperature falling(4) | 140 | °C |
CLOAD = 4.7 nF |
CLOAD = 4.7 nF |
Soft-start period completed |
CLOAD = 4.7 nF |
CLOAD = 4.7 nF |
Transition mode (TM) control is a popular choice for the boost power factor correction topology at lower power levels. Some advantages of this control method are its lower complexity in achieving high power factor and because lower cost boost diode with higher reverse recovery current specification may be used. In TM control MOSFET is turned on always when no current is flowing into diode. Interleaved Transition Mode Control retains this benefit and generally extends the applicability up to much higher power levels while simultaneously conferring the interleaving benefits of reduced input and output ripple current and system thermal optimization.
In UCC28064A, burst mode was introduced respect its predecessor (UCC28063) to achieve higher efficiency in light load conditions. Input voltage feed-forward and threshold adjustment is also available to ensure the user can optimize performance across line and load conditions. When operating single phase on time of the switching phase is doubled with the purpose of compensating the missing power from the not switching phase. In this way for the same COMP value the converter should provide the same output power regardless if operating single phase mode or dual phase mode. Unfortunately this is not always the case. Component variations and MOSFETs turn-off delay can lead to big differences (for the same COMP voltage) in the output power delivery. The Phase Management and Light-Load Operation section will discuss some ways to deal with the variations.
Line voltage feed-forward compensation provides several benefits: it maintains constant bandwidth of the control loop versus line voltage variation, avoids high current in the MOSFETs, inductors, and line filter when line transitions from low to high happens, and helps to keep simple Phase Management control because the COMP pin voltage is almost proportional to Load. Burst Mode enables high efficiency at light load and soft-on and soft-off in burst mode reduces risk of audible noise. The optimal load current at which the converter should enter burst mode can be different for different input voltages. These thresholds can be customized by the user.
Interleaving control and phase management facilitates high efficiency 80+ and Energy Star designs with reduced input and output ripple. The Natural Interleaving method allows TM operation and achieves 180 degrees between the phases by On-time management. Moreover Natural interleaving method does not rely on tight tolerance requirements on the inductors. Negative current sensing is implemented on the total input current instead of just the MOSFET current which prevents MOSFET switching during inrush surges or in any mode where the inductor current may enter in continuous conduction mode (CCM). This prevents reverse recovery conduction events between the MOSFET and output rectifier.
Independent output voltage sense circuits with their separate fault management behaviors provide a high degree of redundancy against PFC stage over-voltage. Brownout, over voltage protection on HVSEN pin (HVSENSE OV), under voltage lockout (UVLO), and device over-temperature faults will all cause a complete Soft-Start cycle. Other faults such as short duration AC Drop-Out, minor over-voltage or cycle-by-cycle over-current cause a live recovery process to initiate by pulling down the COMP pin or by terminating the pulses early.
The error amplifier transconductance is designed to allow smaller compensation components and optimum transient response for large changes in line or load. The Soft-Start process is carefully optimized. A complete Soft-Start is implemented. It is dependent on the output voltage sense to speed up start-up from low AC line and to minimize the effect of excessive capacitance on the COMP pin during start-up into no-load. If some faults events are triggered COMP pin is fast pulled down to zero. This complete discharge of COMP aids with preventing excessive currents on recovery from an AC Brown-Out event.