• Menu
  • Product
  • Email
  • PDF
  • Order now
  • 具有较高的轻负载效率的 UCC28064A Natural Interleaving™ 转换模式 PFC 控制器

    • ZHCSIB2B December   2017  – October 2019 UCC28064A

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • 具有较高的轻负载效率的 UCC28064A Natural Interleaving™ 转换模式 PFC 控制器
  1. 1 特性
  2. 2 应用
  3. 3 说明
    1.     Device Images
      1.      简化应用
  4. 4 修订历史记录
  5. 5 说明 (续)
  6. 6 Pin Configuration and Functions
    1.     Pin Functions
  7. 7 Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Principles of Operation
      2. 8.3.2  Natural Interleaving
      3. 8.3.3  On-Time Control, Maximum Frequency Limiting, Restart Timer and Input Voltage Feed-Forward compensation
      4. 8.3.4  Distortion Reduction
      5. 8.3.5  Zero-Current Detection and Valley Switching
      6. 8.3.6  Phase Management and Light-Load Operation
      7. 8.3.7  Burst Mode Operation
      8. 8.3.8  External Disable
      9. 8.3.9  Improved Error Amplifier
      10. 8.3.10 Soft Start
      11. 8.3.11 Brownout Protection
      12. 8.3.12 Line Dropout Detection
      13. 8.3.13 VREF
      14. 8.3.14 VCC
      15. 8.3.15 System Level Protections
        1. 8.3.15.1 Failsafe OVP - Output Over-voltage Protection
        2. 8.3.15.2 Overcurrent Protection
        3. 8.3.15.3 Open-Loop Protection
        4. 8.3.15.4 VCC Undervoltage Lock-Out (UVLO) Protection
        5. 8.3.15.5 Phase-Fail Protection
        6. 8.3.15.6 CS - Open, TSET - Open and Short Protection
        7. 8.3.15.7 Thermal Shutdown Protection
        8. 8.3.15.8 Fault Logic Diagram
    4. 8.4 Device Functional Modes
  9. 9 Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Custom Design With WEBENCH® Tools
        2. 9.2.2.2  Inductor Selection
        3. 9.2.2.3  ZCD Resistor Selection RZA, RZB
        4. 9.2.2.4  HVSEN
        5. 9.2.2.5  Output Capacitor Selection
        6. 9.2.2.6  Selecting RS For Peak Current Limiting
        7. 9.2.2.7  Power Semiconductor Selection (Q1, Q2, D1, D2)
        8. 9.2.2.8  Brownout Protection
        9. 9.2.2.9  Converter Timing
        10. 9.2.2.10 Programming VOUT
        11. 9.2.2.11 Voltage Loop Compensation
      3. 9.2.3 Application Curves
        1. 9.2.3.1 Input Ripple Current Cancellation with Natural Interleaving
        2. 9.2.3.2 Brownout Protection
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Package Option Addendum
    1. 12.1 Packaging Information
  13. 13器件和文档支持
    1. 13.1 器件支持
      1. 13.1.1 开发支持
        1. 13.1.1.1 使用 WEBENCH® 工具创建定制设计
    2. 13.2 文档支持
      1. 13.2.1 相关文档
    3. 13.3 接收文档更新通知
    4. 13.4 社区资源
    5. 13.5 商标
    6. 13.6 静电放电警告
    7. 13.7 Glossary
  14. 14机械、封装和可订购信息
  15. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

具有较高的轻负载效率的 UCC28064A Natural Interleaving™ 转换模式 PFC 控制器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 降低了输入滤波器和输出电容器纹波电流
    • 为了实现更高系统可靠性和更小大容量电容器而减少的电流纹波
    • 缩小的电磁干扰 (EMI) 滤波器尺寸
  • 高轻负载效率
    • 具有输入电压补偿功能的用户可调节相位管理
    • 具有可调突发阈值的突发模式
    • 有助于符合 EUP Lot6 Tier II、CoC Tier II 和 DOE Level VI 标准
  • 无传感器电流整形简化了电路板布局并提升了效率
  • 输入线路前馈可实现快速线路瞬态响应
  • 浪涌安全电流限制:
    • 在浪涌期间防止 MOSFET 导通
    • 消除输出整流器中的 CCM 操作和反向恢复事件
  • 采用 16 引脚 SOIC 封装,工作温度范围为 –40°C 至 +125°C
  • 使用 UCC28064A 及其 WEBENCH® 电源设计器创建定制设计

2 应用

  • 高清、超高清和 LED 电视
  • 一体式计算机
  • 游戏
  • 适配器
  • 家用音频系统

3 说明

与之前的同类产品相比,UCC28064A 交错式 PFC 控制器具有更高的功率额定值。该器件采用了 Natural Interleaving™ 技术。两个通道均作为主通道运行(即没有从通道),而且这两个通道同步至同一频率。这种方法可以实现更快的响应、出色的相间导通时间匹配以及每个通道的转换模式。该器件具有突发模式功能,可获得较高的轻负载效率。由于具有突发模式,因此在轻负载运行期间无需关闭 PFC 即可实现待机功率目标。而且,由于具有该模式,在与 UCC25630x LLC 控制器和 UCC24624 同步整流器控制器配对使用时,该器件无需使用辅助反激式转换器。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
UCC28064A SOIC (16) 9.90mm x 3.91mm
  1. 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。
UCC28064A fp_graphic_slusde9.gif

Device Images

简化应用

UCC28064A simp_app_slusc60.gif

4 修订历史记录

Changes from A Revision (October 2018) to B Revision

  • Changed 更改了“简化应用”示意图Go

5 说明 (续)

扩展的系统级保护 特性 包括输入欠压和压降恢复、输出过压、开环、过载、软启动、相位故障检测以及热关断保护。附加的失效防护过压保护 (OVP) 特性可防止到一个中间电压的短路,如果没有检测到此短路的话,有可能导致非常严重的器件故障。该器件具有高级非线性增益,可针对线路和负载瞬态事件提供快速而平滑的响应。特殊的线路压降处理可避免严重的电流中断。在突发模式期间,不发生切换时偏置电流会大幅降低,从而提高了待机性能。

6 Pin Configuration and Functions

D Package
16-Pin SOIC
Top View
UCC28064A pinout_d16_slusde9.gif

Pin Functions

PIN I/O DESCRIPTION
NAME NO.
AGND 6 - Analog ground
BRST 9 I Burst mode threshold input
COMP 5 O Error amplifier output
CS 10 I Current sense input
GDA 14 O Phase A gate driver output
GDB 11 O Phase B gate driver output
HVSEN 8 I High voltage output sense
PGND 13 - Power ground
PHB 4 I Phase B enable disable threshold input
TSET 3 I Timing set
VCC 12 - Bias supply input
VINAC 7 I Input AC voltage sense
VSENSE 2 I Error amplifier input
VREF 15 O Voltage reference output
ZCDA 16 I Phase A zero current detection input
ZCDB 1 I Phase B zero current detection input

7 Specifications

7.1 Absolute Maximum Ratings

All voltages are with respect to GND, −40°C < TJ = TA < 125°C, currents are positive into and negative out of the specified terminal, unless otherwise noted.
MIN MAX UNIT
Continuous input voltage VCC(1) −0.5 21 V
COMP(2), PHB, HVSEN(3), VINAC(3), VSENSE(3), TSET, BRST –0.5 7
ZCDA, ZCDB –0.5 4
CS(4) –0.5 3
GDA, GDB(5) –0.5 VCC + 0.3
Continuous input current VCC 20 mA
ZCDA, ZCDB ±5
GDA, GDB(5) –25 25
VREF –2
Peak input current CS –30 mA
TJ Operating junction temperature –40 125 °C
TSOL Soldering 10 s 260 °C
Tstg Storage temperature –65 150 °C
(1) Voltage on VCC is internally clamped. VCC may exceed the continuous absolute maximum input voltage rating if the source is current limited below the absolute maximum continuous VCC input current level.
(2)  In normal use, COMP is connected to capacitors and resistors and is internally limited in voltage swing.
(3) In normal use, VINAC, VSENSE, and HVSEN are connected to high-value resistors and are internally limited in negative-voltage swing. Although not recommended for extended use, VINAC, VSENSE, and HVSEN can survive input currents as high as -10mA from negative voltage sources, and input currents as high as +0.5mA from positive voltage sources.
(4) In normal use, CS is connected to a series resistor to limit peak input current during brief system line-inrush conditions. In these situations, negative voltage on CS may exceed the continuous absolute maximum rating.
(5) No GDA or GDB current limiting is required when driving a power MOSFET gate. However, a small series resistor may be required to damp resonant ringing due to stray inductance.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

All voltages are with respect to GND, −40°C < TJ = TA < 125°C, currents are positive into and negative out of the specified terminal, unless otherwise noted.
MIN MAX UNIT
VCC input voltage from a low-impedance source 14 21 V
VCC input current from a high-impedance source 8 18 mA
VINAC input voltage 0 6 V
VREF load current 0 –2 mA
ZCDA, ZCDB series resistor 20 80 kΩ
TSET resistor to program PWM on-time 66.5 400 kΩ
HVSEN input voltage 0.8 4.5 V
PHB Phase management threshold voltage 0 2 V
BRST Burst mode threshold voltage 0 VPHB - 0.6 V V

7.4 Thermal Information

THERMAL METRIC UCC28064A UNIT
SOIC (D)
16 PINS
RθJA Junction-to-ambient thermal resistance(4) 91.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance(3) 52.1 °C/W
RθJB Junction-to-board thermal resistance(2) 48.6 °C/W
ψJT Junction-to-top characterization parameter(1) 14.9 °C/W
ψJB Junction-to-board characterization parameter(5) 48.3 °C/W
(1) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
(2) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(4) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(5) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).

7.5 Electrical Characteristics

At VCC = 16 V, AGND = PGND = 0 V, VINAC = 3 V, VSENSE = 6 V, HVSEN = 3 V, PHB = 0V, BRST = 0V, RTSET = 133 kΩ, all voltages are with respect to GND, all outputs unloaded, −40°C < TJ = TA < 125°C, and currents are positive into and negative out of the specified terminal, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VCC BIAS SUPPLY
VCCSHUNT VCC shunt voltage(1) IVCC = 10 mA 22 24 26 V
IVCC(UVLO) VCC current, UVLO VCC = 9.3 V prior to turn on 125 200 µA
IVCC(stby) VCC current, disabled VSENSE = 0 V 150 210 µA
IVCC(on) VCC current, enabled VSENSE = 2 V 5 8 mA
IVCC(BURST) VCC current burst mode no switching VCOMP < VBURST 650 850 µA
UNDERVOLTAGE LOCKOUT (UVLO)
VCCON VCC turnon threshold VCC rising 9.45 10.35 11.1 V
VCCOFF VCC turnoff threshold VCC falling 8.8 9.6 10.7 V
ΔVCCUVLO UVLO Hysteresis VCCON - VCCOFF 0.68 0.8 0.9 V
REFERENCE
VREF VREF output voltage, no load IVREF = 0 mA 5.82 6.00 6.18 V
ΔVREF_LOAD VREF change with load 0 mA ≤ IVREF ≤ −2 mA -6 -1 mV
ΔVREF_VCC VREF change with VCC 12 V ≤ VCC ≤ 20 V 2 10 mV
ERROR AMPLIFIER
VSENSEreg25 VSENSE input regulation voltage TA = 25°C 5.85 6 6.15 V
VSENSEreg VSENSE input regulation voltage 5.82 6 6.18 V
IVSENSE VSENSE input bias current In regulation 50 100 150 nA
VENAB VSENSE enable threshold, rising 1.15 1.25 1.35 V
VSENSE enable hysteresis 0.02 0.07 0.15 V
VCOMP_CLMP COMP high voltage, clamped VSENSE = VSENSEreg – 0.3 V 4.70 4.95 5.10 V
VCOMP_SAT COMP low voltage, saturated VSENSE = VSENSEreg + 0.3 V 0.03 0.125 V
gM1 VSENSE to COMP transconductance, small signal 0.99(VSENSEreg) < VSENSE < 1.01(VSENSEreg), COMP = 3 V 40 55 70 µS
VSENSE_gM2_SINK VSENSE high-going threshold to enable COMP large signal gain, percent Relative to VSENSEreg, COMP = 3 V 3.25 5 6.75 %
VSENSE_gM2_SOURCE VSENSE low-going threshold to enable COMP large signal gain, percent Relative to VSENSEreg, COMP = 3 V –6.75 −5 −3.25 %
gM2_SOURCE VSENSE to COMP transconductance, large signal VSENSE = VSENSEreg – 0.4 V , COMP = 3 V 210 290 370 µS
gM2_SINK VSENSE to COMP transconductance, large signal VSENSE = VSENSEreg + 0.4 V, COMP = 3 V 210 290 370 µS
ICOMP_SOURCE_MAX COMP maximum source current VSENSE = 5 V, COMP = 3 V -170 -125 -80 µA
RCOMPDCHG COMP discharge resistance HVSEN = 5.2 V, COMP = 3 V 1.6 2 2.4 kΩ
IDODCHG COMP discharge current during Dropout VSENSE = 5 V, VINAC = 0.3 V, COMP = 1V 3.2 4 4.8 µA
VLOW_OV VSENSE overvoltage threshold, rising Relative to VSENSEreg 6.5 8 9.5 %
ΔVLOW_OV_HYST VSENSE overvoltage hysteresis Relative to VLOW_OV -3 -2 -1.5 %
VHIGH_OV VSENSE 2nd overvoltage threshold, rising Relative to VSENSEreg 9.3 11 12.7 %
SOFT START
VSSTHR COMP Soft-Start threshold, falling VSENSE = 1.5 V 10 23 35 mV
ISS,FAST COMP Soft-Start current, fast SS-state, VENAB < VSENSE < VREF/2 -170 -125 -80 µA
ISS,SLOW COMP Soft-Start current, slow SS-state, VREF/2 < VSENSE < 0.88VREF -20 -16 -11.5 µA
KEOSS VSENSE End-of-Soft-Start threshold factor Percent of VSENSEreg 96.5% 98.3% 99.8%
OUTPUT MONITORING
VHV_OV_FLT HVSEN threshold to overvoltage fault HVSEN rising 4.64 4.87 5.1 V
VHV_OV_CLR HVSEN threshold to overvoltage clear HVSEN falling 4.45 4.67 4.8 V
GATE DRIVE
VGDx_H GDA, GDB output voltage, high IGDA, IGDB = −100 mA 10.7 12.4 15 V
RGDx_H GDA, GDB on-resistance, high IGDA, IGDB = −100 mA 8.8 16.7 Ω
VGDx_L GDA, GDB output voltage, low IGDA, IGDB = 100 mA 0.18 0.32 V
RGDx_L GDA, GDB on-resistance, low IGDA, IGDB = 100 mA 2 3.2 Ω
VGDx_H_VCCH GDA, GDB output voltage high, clamped VCC = 20 V, IGDA, IGDB = −5 mA 11.8 13.5 15 V
VGDx_H_VCCL GDA, GDB output voltage high, low VCC VCC = 12 V, IGDA, IGDB = −5 mA 10 10.5 11.5 V
VGDx_L_UVLO GDA, GDB output voltage, UVLO VCC = 3.0 V, IGDA, IGDB = 2.5 mA 100 200 mV
tGDx_RISE Rise time 1 V to 9 V, CLOAD = 1 nF 18 30 ns
tGDx_FALL Fall time 9 V to 1 V, CLOAD = 1 nF 12 25 ns
ZERO CURRENT DETECTOR
VZCDx_TRIG ZCDA, ZCDB voltage threshold, falling 0.8 1 1.2 V
VZCDx_ARM ZCDA, ZCDB voltage threshold, rising 1.5 1.7 1.9 V
VZCDx_CLMP_H ZCDA, ZCDB clamp, high IZCDA = +2 mA, IZCDB = +2 mA 2.6 3 3.4 V
VZCDx_CLMP_L ZCDA, ZCDB clamp, low IZCDA = −2 mA, IZCDB = −2 mA -0.40 −0.2 0 V
IZCDx ZCDA, ZCDB input bias current ZCDA = 1.4 V, ZCDB = 1.4 V -0.5 0 0.5 µA
tZCDx_DEL ZCDA, ZCDB delay to GDA, GDB outputs From ZCDx input falling to 1 V to respective gate drive output rising 10% 50 100 ns
tZCDx_BLNK ZCDA, ZCDB blanking time From GDx rising to GDx falling 100 ns
CURRENT SENSE
ICS CS input bias current, dual-phase At rising threshold -200 -166 -120 µA
VCS_DPh CS current-limit rising threshold, dual-phase -0.22 -0.2 -0.18 V
VCS_SPh CS current-limit rising threshold, single-phase PHB = 6 V -0.183 -0.166 -0.149 V
VCS_RST CS current-limit reset falling threshold -0.025 –0.015 -0.002 V
tCS_DEL CS current-limit response time From CS exceeding threshold−0.05 V to GDx dropping 10% 60 100 ns
tCS_BLNK CS blanking time From GDx rising and falling edges 100 ns
VINAC INPUT
IVINAC VINAC input bias current, above brownout VINAC = 2 V -0.5 0 0.5 µA
VBOTHR VINAC brownout threshold 1.33 1.45 1.6 V
tBODLY VINAC brownout filter time VINAC below the brownout threshold for the brownout filter time 500 640 810 ms
tBORST VINAC brownout reset time VINAC above the brownout threshold for the brownout reset time after Brown out event 300 450 600 ms
IBOHYS VINAC brownout hysteresis current VINAC = 1 V for > tBODLY 1.6 1.95 2.25 µA
VDODET VINAC dropout detection threshold VINAC falling 0.310 0.35 0.38 V
tDODLY VINAC dropout filter time VINAC below the dropout detection threshold for the dropout filter time 3.5 5 7 ms
VDOCLR VINAC dropout clear threshold VINAC rising 0.67 0.71 0.75 V
PULSE-WIDTH MODULATOR
KTL On-time factor, two phases operating, low VINAC_PK VINAC=1.6V, VCOMP=4V(2) 3.0 4.15 5.3 µs/V
KTH On-time factor, two phases operating, high VINAC_PK VINAC= 5V, VCOMP = 4V(2) 0.36 0.43 0.5 µs/V
KTSL On-time factor, single-phase operating, low VINAC_PK VINAC=1.6V, VCOMP = 1.5V, PHB = 2V(2) 6.1 8.3 10.5 µs/V
KTSH On-time factor, single-phase operating, high VINAC_PK VINAC= 5V, VCOMP = 1.5V, PHB=2V(2) 0.73 0.87 1.01 µs/V
tZCC_I Zero-crossing distortion correction additional on time COMP = 0.5 V, VINAC = 0.1 V 15 23.6 32.2 µs
tZCC_II Zero-crossing distortion correction additional on time COMP = 0.5 V, VINAC = 1.6 V 0.7 1.1 1.5 µs
tMIN Minimum Switching period RTSET = 133 kΩ, VCOMP = 0.3, VINAC = 3 V(2) 1.9 2.7 3.5 µs
tSTART PWM restart time ZCDA = ZCDB = 2 V(3) 160 210 265 µs
tONMAX_L Maximum FET on time at low VINAC VSENSE = 5.8 V, VINAC=1.6V 15.1 20.4 26.2 µs
tONMAX_H Maximum FET on time at High VINAC VSENSE = 5.8 V, VINAC= 5V 1.5 2 2.4 µs
tONMAX_SL Maximum FET on time at low VINAC, Single Phase operation. VSENSE = 5.8V, VINAC=1.6V, PHB = 6V 11.8 16 20.2 µs
tONMAX_SH Maximum FET on time at hgih VINAC, single phase operation VSENSE = 5.8V, VINAC=5 V, PHB = 6V 1.37 1.66 1.95 µs
ΔtONMAX_AB_L Phase B to phase A on-time matching error VSENSE = 5.8 V, VINAC=1.6V –6 6 %
ΔtONMAX_AB_H Phase B to phase A on-time matching error VSENSE = 5.8 V, VINAC= 5V -6 6 %
ΔVBRST_HYST BRST Hysteresis, COMP voltage rising BRST = 1V, VINAC = 1.5 V 30 50 70 mV
ΔVPHB_HYST PHB Hysteresis COMP voltage rising PHB = 3V, VINAC = 2.5 V 80 150 210 mV
IPHB_RANGE PHB pin sourced current when high input voltage VINAC = 3.75V, PHB = 2V 2 3 4.1 µA
IBRST_RANGE BRST pin sourced current when high input voltage VINAC = 3.75V, BRST = 2V 2 3 4.1 µA
VVINAC_RANGE_THF VINAC range falling threshold PHB = 2V, BRST = 2V 2.95 3.15 3.3 V
ΔVINAC_RANGE VINAC range Hysteresis at rising edge PHB = 2V, BRST=2V 300 350 400 mV
THERMAL SHUTDOWN
TJ Thermal shutdown temperature Temperature rising(4) 160 °C
TJ Thermal restart temperature Temperature falling(4) 140 °C
(1) Excessive VCC input voltage and current will damage the device. This clamp will not protect the device from an unregulated bias supply. If an unregulated bias supply is used, a series-connected Fixed Positive-Voltage Regulator such as the UA78L15A is recommended. See the Absolute Maximum Ratings table for the limits on VCC voltage, current, and junction temperature.
(2) Gate drive on-time is proportional to (VCOMP – 0.125 V). The on-time proportionality factor, KT, scales linearly with the value of RTSET and is different in two-phase and single-phase modes. The minimum switching period is proportional to RTSET.
(3) An output on-time is generated at both GDA and GDB if both ZCDA and ZCDB negative-going edges are not detected for the restart time. In single-phase mode, the restart time applies for the ZCDA input and the GDA output.
(4) Thermal shutdown occurs at temperatures higher than the normal operating range. Device performance above the normal operating temperature is not specified or assured.

7.6 Typical Characteristics

VVCC = 16 V, VAGND = VPGND = 0 V, VVINAC = 3 V, VVSENSE = 6 V, VHVSEN = 3 V, VPHB = 0 V, RTSET = 133 kΩ; all voltages are with respect to GND, all outputs unloaded, TJ = 25°C, and currents are positive into and negative out of the specified terminal, unless otherwise noted.
UCC28064A D100SLUA789.gif
Figure 1. RTSET Resistance and Zero-Crossing Distortion Correction Additional On Time
UCC28064A D102SLUA789.gif
Figure 3. VINAC Brownout Hysteresis Current
UCC28064A D104SLUA789.gif
Figure 5. UVLO On Off Thresholds
UCC28064A D106SLUA789.gif
Figure 7. VCC Bias Supply Current
UCC28064A Figure_06_slusao7.gif
Figure 9. Error Amplifier Transconductance vs VSENSE
UCC28064A Figure_08_slusao7.gif
Figure 11. Error Amplifier Output Current vs Output Voltage
UCC28064A tc_gate_fall-t_lus837.gif
CLOAD = 4.7 nF
Figure 13. Gate Drive Falling vs Time
UCC28064A tc_gate_fall-t_delay_lus837.gif
CLOAD = 4.7 nF
Figure 15. Gate Drive Falling and Delay From CS Input vs Time
UCC28064A D101SLUA789.gif
Figure 2. VINAC Brownout Detection Threshold
UCC28064A D103SLUA789.gif
Figure 4. VREF Output Voltage
UCC28064A D105SLUA789.gif
Figure 6. UVLO Hysteresis
UCC28064A eaiout_vs_vsensevin_slusde9.gif
Soft-start period completed
Figure 8. Error Amplifier Output Current vs Input Voltage
UCC28064A Figure_07_slusao7.gif
Figure 10. Error Amplifier Transconductance vs Temperature
UCC28064A tc_gate_rise-t_lus837.gif
CLOAD = 4.7 nF
Figure 12. Gate Drive Rising vs Time
UCC28064A tc_gate_rise-t_delay_lus837.gif
CLOAD = 4.7 nF
Figure 14. Gate Drive Rising and Delay From ZCD Input vs Time

8 Detailed Description

8.1 Overview

Transition mode (TM) control is a popular choice for the boost power factor correction topology at lower power levels. Some advantages of this control method are its lower complexity in achieving high power factor and because lower cost boost diode with higher reverse recovery current specification may be used. In TM control MOSFET is turned on always when no current is flowing into diode. Interleaved Transition Mode Control retains this benefit and generally extends the applicability up to much higher power levels while simultaneously conferring the interleaving benefits of reduced input and output ripple current and system thermal optimization.

In UCC28064A, burst mode was introduced respect its predecessor (UCC28063) to achieve higher efficiency in light load conditions. Input voltage feed-forward and threshold adjustment is also available to ensure the user can optimize performance across line and load conditions. When operating single phase on time of the switching phase is doubled with the purpose of compensating the missing power from the not switching phase. In this way for the same COMP value the converter should provide the same output power regardless if operating single phase mode or dual phase mode. Unfortunately this is not always the case. Component variations and MOSFETs turn-off delay can lead to big differences (for the same COMP voltage) in the output power delivery. The Phase Management and Light-Load Operation section will discuss some ways to deal with the variations.

Line voltage feed-forward compensation provides several benefits: it maintains constant bandwidth of the control loop versus line voltage variation, avoids high current in the MOSFETs, inductors, and line filter when line transitions from low to high happens, and helps to keep simple Phase Management control because the COMP pin voltage is almost proportional to Load. Burst Mode enables high efficiency at light load and soft-on and soft-off in burst mode reduces risk of audible noise. The optimal load current at which the converter should enter burst mode can be different for different input voltages. These thresholds can be customized by the user.

Interleaving control and phase management facilitates high efficiency 80+ and Energy Star designs with reduced input and output ripple. The Natural Interleaving method allows TM operation and achieves 180 degrees between the phases by On-time management. Moreover Natural interleaving method does not rely on tight tolerance requirements on the inductors. Negative current sensing is implemented on the total input current instead of just the MOSFET current which prevents MOSFET switching during inrush surges or in any mode where the inductor current may enter in continuous conduction mode (CCM). This prevents reverse recovery conduction events between the MOSFET and output rectifier.

Independent output voltage sense circuits with their separate fault management behaviors provide a high degree of redundancy against PFC stage over-voltage. Brownout, over voltage protection on HVSEN pin (HVSENSE OV), under voltage lockout (UVLO), and device over-temperature faults will all cause a complete Soft-Start cycle. Other faults such as short duration AC Drop-Out, minor over-voltage or cycle-by-cycle over-current cause a live recovery process to initiate by pulling down the COMP pin or by terminating the pulses early.

The error amplifier transconductance is designed to allow smaller compensation components and optimum transient response for large changes in line or load. The Soft-Start process is carefully optimized. A complete Soft-Start is implemented. It is dependent on the output voltage sense to speed up start-up from low AC line and to minimize the effect of excessive capacitance on the COMP pin during start-up into no-load. If some faults events are triggered COMP pin is fast pulled down to zero. This complete discharge of COMP aids with preventing excessive currents on recovery from an AC Brown-Out event.

8.2 Functional Block Diagram

UCC28064A block2_slusc60.gif

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale