LMX8410L 是一款具有集成 LO 和 IF 放大器的高性能宽带(射频输入为 4 至 10GHz)I/Q 解调器。在 IIP3 为 28dBm 而 NF 为 15dB(频率均为 5GHz)的情况下,该器件可提供出色的动态范围,适用于高性能 应用中使用 DP83869。该器件可提供 2.7GHz 的大型复杂带宽,适用于高数据速率 应用。
LMX8410L 提供自动直流失调电压校正算法,可将失调电压降至 ±2mV 以下。使用 SPI 接口可以精确控制 I 和 Q 通道的增益和相位,从而实现高镜像抑制。
LMX8410L 具有高度集成度,可提供高性能,同时还能节省布板空间并降低复杂性。它集成了宽带射频输入平衡-非平衡变压器,因此无需外部平衡-非平衡变压器。它集成了高性能 PLL 和 VCO,因此无需外部 LO 和 LO 驱动器。该器件还集成了一个 IF 放大器和几个低噪声 LDO,进一步简化了电路板。
LMX8410L 集成了一个极低噪声的合成器,PLL FOM 为 –236dBc/Hz,在 5GHz 载波条件下提供高达 56.5dBc 的 DSB 集成噪声。LO 允许跨多个器件进行相位同步。高性能合成器输出可用于驱动另一级或数据转换器。对于共享外部 LO 的 应用 ,可以旁路掉集成的 LO。
器件型号 | 封装 | 封装尺寸(标称值) |
---|---|---|
LMX8410L | VQFN (48) | 7.00mm × 7.00mm |
Changes from * Revision (March 2018) to A Revision
PIN | I/O | DESCRIPTION | |
---|---|---|---|
NAME | NAME | ||
1 | CE | Input | Chip Enable input. Active HIGH powers on the device. 1.8V to 3.3V logic. |
2 | VBIAS_VCO2 | Bypass | VCO bias. Requires connecting 10-µF capacitor to VCO ground. Place close to pin. If using external LO, this pin should either be floated or configured the same way as internal LO mode. |
3 | VBIAS_VCO1 | Bypass | VCO bias. Requires connecting 10-µF capacitor to VCO ground. Place close to pin. If using external LO, this pin should either be floated or configured the same way as internal LO mode. |
4 | GND | Ground | VCO ground. VBIAS pin capacitors must bypass to this point. |
5 | SYNC | Input | Trigger pin for synchronizing multiple devices. If using external LO, tie this pin to GND. |
6 | GND | Ground | Digital ground. VCC_DIG bypass capacitors must bypass to this point. |
7 | VCC_DIG | Supply | Digital supply. TI recommends connecting 0.1-µF capacitor to digital ground. |
8 | OSCINP | Input | Reference input clock (+). High input impedance. Requires connecting series capacitor (0.1 µF recommended). If using external LO, tie this pin to GND. |
9 | OSCINM | Input | Reference input clock (–). High input impedance. Requires connecting series capacitor (0.1 µF recommended). If using external LO, tie this pin to GND. |
10 | VREG_OSCIN | Bypass | Internal LDO output. Requires connecting 1-µF capacitor to digital ground. Place close to pin. If using external LO, this pin should either be floated or configured the same way as internal LO mode. |
11 | MUXOUT | Output | Readback or lock detect output. Pin mode configured by internal register settings. |
12 | VCC_CP | Supply | Charge pump supply. TI recommends connecting 0.1 µF and 100 pF to charge pump ground. Place close to pin. This pin must be connected to VCC, even if using external LO. |
13 | CP | Output | Charge pump output. TI recommends connecting C1 of loop filter close to pin. If using external LO, this pin should either be floated or configured the same way as internal LO mode. |
14 | GND | Ground | Charge pump ground. VCC_CP bypass capacitors must bypass to this point. |
15 | GND | Ground | MASH engine ground. VCC_MASH bypass capacitors must bypass to this point. |
16 | VCC_MASH | Supply | MASH engine supply. TI recommends connecting 0.1 µF and 100 pF to MASH engine ground. Place close to pin. This pin must be connected to VCC, even if using external LO. |
17 | LO_M | Input/Output | Internal LO differential output (–) or external LO differential input (–). In differential output mode, requires connecting 50-Ω resistor pullup to VCC as close as possible to pin. In differential input mode, remove the pull up resistors or inductors. The input should be capacitively coupled with internal biasing. See LO Interface for more information. |
18 | LO_P | Input/Output | Internal LO differential output (+) or external LO differential input (+). In differential output mode, requires connecting 50-Ω resistor pullup to VCC as close as possible to pin. In differential input mode, remove the pull up resistors or inductors. The input should be capacitively coupled with internal biasing. See LO Interface for more information. |
19 | VCC_BUF | Supply | LO buffer supply. TI recommends connecting 0.1 µF and 100 pF to VCO ground. This pin must be connected to VCC, even if using external LO. |
20 | GND | Ground | IF amplifier Q-channel ground. Q-channel VCC5 bypass capacitors must bypass to this point. |
21 | IF_QM | Output | IF amplifier Q-channel differential output (–). TI recommends connecting series 50-Ω resistor close to pin. |
22 | IF_QP | Output | IF amplifier Q-channel differential output (+). TI recommends connecting series 50-Ω resistor close to pin. |
23 | VCC5_IFQ | Supply | IF amplifier Q-channel 5-V supply. TI recommends connecting 0.1 µF and 100 pF to IF amplifier Q-channel ground. Place close to pin. |
24 | SCK | Input | SPI clock signal. High impedance CMOS input. 1.8-V to 3.3-V logic. |
25 | SDI | Input | SPI data signal. High impedance CMOS input. 1.8-V to 3.3-V logic. |
26 | CSB | Input | SPI chip select signal. High impedance CMOS input. 1.8-V to 3.3-V logic. |
27 | VCC_IFQ | Supply | IF mixer Q-channel supply. TI recommends connecting 0.1 µF and 100 pF to digital ground. |
28 | NC | N/A | No connect. Pin is not internally connected and may be floated or shorted to other nodes. |
29 | VCC_RFQ | Supply | RF Q-channel supply. TI recommends connecting 0.1 µF and 100 pF to digital ground. |
32 | GND | Ground | RF input path ground. |
31 | RF | Input | RF input. Single-ended. Must be AC coupled. |
32 | GND | Ground | RF input path ground. |
33 | VCC_RFI | Supply | RF I-channel supply. TI recommends connecting 0.1 µF and 100 pF to digital ground. |
34 | GND | Ground | Should be connected IF ground. |
35 | VCC_IFI | Supply | IF mixer I-channel supply. TI recommends connecting 0.1 µF and 100 pF to digital ground. |
36 | VCM_IN | Input | Common-mode voltage input. When the VCM_CONFIG register is set to external (0xF), the voltage on this pin sets the common-mode voltage of the IF amplifiers. |
37 | NC | Ground | Connect this pin to IF ground. |
38 | VCC5_IFI | Supply | IF amplifier I-channel 5-V supply. TI recommends connecting 0.1 µF and 100 pF to IF amplifier I-channel ground. Place close to pin. |
39 | IF_IP | Output | IF amplifier I-channel differential output (+). TI recommends connecting series 50-Ω resistor close to pin. |
40 | IF_IM | Output | IF amplifier I-channel differential output (–). TI recommends connecting series 50-Ω resistor close to pin. |
41 | GND | Ground | IF amplifier I-channel ground. I-channel VCC5 bypass capacitors should bypass to this point. |
42 | VBIAS_VARAC | Bypass | VCO varactor bias. Requires connecting 10µF capacitor to VCO ground. If using external LO, this pin should either be floated or configured the same way as internal LO mode. |
43 | GND | Ground | VCO ground. Varactor bias bypass capacitor should bypass to this point. |
44 | VTUNE | Input | VCO tuning voltage input. If using internal LO, connect the output of the loop filter to this point. If using external LO, tie this pin to GND. |
45 | VREG_VCO | Bypass | VCO LDO output node. Requires connecting 10-µF capacitor to VCO ground. Place close to pin. This capacitor must be present even if used in external LO mode. |
46 | VCC_VCO | Supply | VCO supply. TI recommends connecting 0.1-µF and 100-pF capacitors to VCO ground. This pin must be connected to VCC, even if using external LO. |
47 | VREF_VCO | Bypass | VCO LDO reference node. Requires connecting 1-µF capacitor to VCO ground. If using external LO, this pin should either be floated or configured the same way as internal LO mode. |
48 | GND | Ground | VCO ground. VCO LDO, LDO reference, and supply bypass capacitors must bypass to this point. |
49 | PAD | Ground | Die attach pad. Internally connected to ground. TI recommends shorting ground pins to this pad on the same plane, if possible. |
MIN | MAX | UNIT | ||
---|---|---|---|---|
VCC | Power supply voltage, 3.3-V rail | –0.3 | 3.6 | V |
VCC5 | Power supply voltage, 5-V rail | –0.3 | 5.3 | V |
PD | Power dissipation | 5 | W | |
TJ | Junction temperature | –40 | 150 | °C |
Tstg | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins | 2500 | V |
Charged device model (CDM), per JEDEC specificationJESD22-C101, all pins | 500 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
VCC | Power supply voltage, 3.3V rail | 3.15 | 3.3 | 3.45 | V |
VCC5 | Power supply voltage, 5V rail | 4.75 | 5 | 5.25 | V |
TA | Ambient temperature | –40 | 25 | 85 | °C |
TJ | Junction temperature | 125 | °C |
THERMAL METRIC(1)(2) | LMX8410L | UNIT | |
---|---|---|---|
RGZ (VQFN) | |||
48 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 21.9 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 9.4 | °C/W |
RθJB | Junction-to-board thermal resistance | 5.6 | °C/W |
ΨJT | Junction-to-top characterization parameter | 0.1 | °C/W |
ΨJB | Junction-to-board characterization parameter | 5.6 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | 0.4 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
POWER SUPPLY | ||||||
VCC | Power supply voltage, 3.3-V rail | 3.15 | 3.3 | 3.45 | V | |
ICC | Power supply current, 3.3-V rail | Internal LO | 650 | mA | ||
External LO | 330 | |||||
VCC5 | Power supply voltage, 5-V rail | 4.75 | 5 | 5.25 | V | |
ICC5 | Power supply current both channels I and Q, 5-V rail | 130 | mA | |||
FREQUENCY RANGES | ||||||
FRF | RF port frequency range | 4000 | 10000 | MHz | ||
FLO | LO port frequency range | 4000 | 10000 | MHz | ||
FIF | IF port frequency range (3dB bandwidth) | DC | 1350 | MHz | ||
DYNAMIC PERFORMANCE | ||||||
NF | Noise figure | RF = 4 GHz | 15 | dB | ||
RF = 5 GHz | 15 | |||||
RF = 6 GHz | 16 | |||||
RF = 7 GHz | 17 | |||||
RF = 8 GHz | 18 | |||||
RF = 9 GHz | 19 | |||||
RF = 10 GHz | 19 | |||||
G | Voltage gain(1) | RF = 4 GHz | 11 | dB | ||
RF = 5 GHz | 11 | |||||
RF = 6 GHz | 10.5 | |||||
RF = 7 GHz | 9.5 | |||||
RF = 8 GHz | 9 | |||||
RF = 9 GHz | 8 | |||||
RF = 10 GHz | 7 | |||||
IIP3 | Input intercept point, 3rd order(2) | RF = 4 GHz | 28 | dBm | ||
RF = 5 GHz | 28 | |||||
RF = 6 GHz | 26.5 | |||||
RF = 7 GHz | 27 | |||||
RF = 8 GHz | 26.5 | |||||
RF = 9 GHz | 27 | |||||
RF = 10 GHz | 27 | |||||
IIP2 | Input intercept point, 2nd order (uncalibrated) | RF = 4 GHz | 48 | dBm | ||
RF = 5 GHz | 48 | |||||
RF = 6 GHz | 46 | |||||
RF = 7 GHz | 44 | |||||
RF = 8 GHz | 45 | |||||
RF = 9 GHz | 44 | |||||
RF = 10 GHz | 42 | |||||
SP2x2 | 2×2 spur [RF input power at –10 dBm] | RF = 4 GHz | -58 | dBc | ||
RF = 5 GHz | -58 | |||||
RF = 6 GHz | -58 | |||||
RF = 7 GHz | -54 | |||||
RF = 8 GHz | -52 | |||||
RF = 9 GHz | -50 | |||||
RF = 10 GHz | -48 | |||||
SP3x3 | 3×3 spur [RF input power at –10 dBm] | RF = 4 GHz | -75 | dBc | ||
RF = 5 GHz | -75 | |||||
RF = 6 GHz | -75 | |||||
RF = 7 GHz | -75 | |||||
RF = 8 GHz | -75 | |||||
RF = 9 GHz | -75 | |||||
RF = 10 GHz | -75 | |||||
OP1dB | Output 1-dB compression point | RF = 4 GHz | 12 | dBm | ||
RF = 5 GHz | 12 | |||||
RF = 6 GHz | 12 | |||||
RF = 7 GHz | 12 | |||||
RF = 8 GHz | 12 | |||||
RF = 9 GHz | 12 | |||||
RF = 10 GHz | 12 | |||||
IRR | Image rejection ratio [calibrated] | RF = 4 GHz | 43 | dB | ||
RF = 5 GHz | 43 | |||||
RF = 6 GHz | 44 | |||||
RF = 7 GHz | 44 | |||||
RF = 8 GHz | 43 | |||||
RF = 9 GHz | 42 | |||||
RF = 10 GHz | 36 | |||||
ISORFxIF | RF to IF isolation | RF = 4 GHz | 40 | dB | ||
RF = 5 GHz | 40 | |||||
RF = 6 GHz | 40 | |||||
RF = 7 GHz | 40 | |||||
RF = 8 GHz | 40 | |||||
RF = 9 GHz | 40 | |||||
RF = 10 GHz | 40 | |||||
LEAKRFxIF | LO to IF leakage | LO = 4 GHz | -35 | dBm | ||
LO = 5 GHz | -35 | |||||
LO = 6 GHz | -35 | |||||
LO = 7 GHz | -35 | |||||
LO = 8 GHz | -35 | |||||
LO = 9 GHz | -35 | |||||
LO = 10 GHz | -35 | |||||
LEAKLOxRF | LO to RF leakage (internal Lo mode) | LO = 4 GHz | -60 | dBm | ||
LO = 5 GHz | -60 | |||||
LO = 6 GHz | -52 | |||||
LO = 7 GHz | -50 | |||||
LO = 8 GHz | -50 | |||||
LO = 9 GHz | -45 | |||||
LO = 10 GHz | –40 | |||||
PERFORMANCE TUNING | ||||||
GIQ_CAL | I/Q gain calibration range | IMRR_GCAL register full range | ±0.5 | dB | ||
GIQ_STEP | I/Q gain calibration step size | 0.05 | dB | |||
PHIQ_CAL | I/Q phase calibration range | IMRR_PCAL register full range | ±20 | Deg | ||
PHIQ_STEP | I/Q phase calibration step size | Step size can be made reduced to 0.25 deg in fine accuracy mode | 0.45 | Deg | ||
VDCOC | calibrated differential DC offset | +/- 2 | mV | |||
PORTS | ||||||
S11RF | RF return loss | RF = 4 GHz | 8 | dB | ||
RF = 5 GHz | 19 | dB | ||||
RF = 6 GHz | 21 | dB | ||||
RF = 7 GHz | 16 | dB | ||||
RF = 8 GHz | 10 | dB | ||||
RF = 9 GHz | 9 | dB | ||||
RF = 10 GHz | 9 | dB | ||||
S11LO | LO return loss (differential measurement) | RF = 4 GHz | 15 | dB | ||
RF = 5 GHz | 15 | dB | ||||
RF = 6 GHz | 20 | dB | ||||
RF = 7 GHz | 17 | dB | ||||
RF = 8 GHz | 18 | dB | ||||
RF = 9 GHz | 17 | dB | ||||
RF = 10 GHz | 12 | dB | ||||
PLO_IN | External LO input power | 8 GHz RFIN | 6 | dBm | ||
PLO_OUT | External LO output power(3) | <7 GHz RFout | 2 | dBm | ||
<10 GHz RFout | -1 | dBm | ||||
VIF_RANGE | IF output voltage swing (differential) | 2 | VPP | |||
VCM | IF common mode voltage, internal or external source | 1.2 | 1.7 | 2 | V | |
PinRF | RF input power | 5 | dBm | |||
LO SYNTHESIZER INPUT SIGNAL PATH | ||||||
FOSCIN | Reference oscillator port frequency range | OSC_2X = 0 | 5 | 1400 | MHz | |
OSC_2X = 1 | 5 | 200 | ||||
VOSCIN | Reference input voltage | AC-coupled required(4) | 0.2 | 2 | Vpp | |
FMULT | Multiplier frequency (when multiplier enabled) | Input range | 30 | 70 | MHz | |
Output range | 180 | 250 | ||||
LO SYNTHESIZER PHASE DETECTOR AND CHARGE PUMP | ||||||
FPD | Phase detector frequency | Integer Mode (FRAC_ORDER = 0) | 0.125 | 400 | MHz | |
Fractional Mode (FRAC_ORDER = 1,2,3) | 5 | 300 | ||||
Fractional Mode (FRAC_ORDER = 4) | 5 | 240 | ||||
ICPOUT | Charge pump leakage current | CPG = 0 | 15 | nA | ||
Effective charge pump current (sum of up and down currents) | CPG = 4 | 3 | mA | |||
CPG = 1 | 6 | |||||
CPG = 5 | 9 | |||||
CPG = 3 | 12 | |||||
CPG = 7 | 15 | |||||
PN1/F | Normalized PLL flicker noise | FPD = 100 MHz, FVCO = 12 GHz(5) | –129 | dBc/Hz | ||
PNFLAT | Normalized PLL thermal noise floor | –236 | dBc/Hz | |||
LO SYNTHESIZER VCO | ||||||
PNvco | Open loop VCO phase noise | 8 GHz VCO, 10 kHz offset | –80 | dBc/Hz | ||
8 GHz VCO, 100 kHz offset | –107 | |||||
8 GHz VCO, 1 MHz offset | –128 | |||||
8 GHz VCO, 10 MHz offset | –148 | |||||
8 GHz VCO, 90 MHz offset | –157 | |||||
9.2 GHz VCO, 10 kHz offset | –79 | |||||
9.2 GHz VCO, 100 kHz offset | –105 | |||||
9.2 GHz VCO, 1 MHz offset | –127 | |||||
9.2 GHz VCO, 10 MHz offset | –147 | |||||
9.2 GHz VCO, 90 MHz offset | –157 | |||||
10.3 GHz VCO, 10 kHz offset | –77 | |||||
10.3 GHz VCO, 100 kHz offset | –104 | |||||
10.3 GHz VCO, 1 MHz offset | –126 | |||||
10.3 GHz VCO, 10 MHz offset | –147 | |||||
10.3 GHz VCO, 90 MHz offset | –157 | |||||
11.3 GHz VCO, 10 kHz offset | –76 | |||||
11.3 GHz VCO, 100 kHz offset | –103 | |||||
11.3 GHz VCO, 1 MHz offset | –125 | |||||
11.3 GHz VCO, 10 MHz offset | –145 | |||||
11.3 GHz VCO, 90 MHz offset | –158 | |||||
12.5 GHz VCO, 10 kHz offset | –74 | |||||
12.5 GHz VCO, 100 kHz offset | –100 | |||||
12.5 GHz VCO, 1 MHz offset | –123 | |||||
12.5 GHz VCO, 10 MHz offset | –144 | |||||
12.5 GHz VCO, 90 MHz offset | –157 | |||||
13.3 GHz VCO, 10 kHz offset | –73 | |||||
13.3 GHz VCO, 100 kHz offset | –100 | |||||
13.3 GHz VCO, 1 MHz offset | –122 | |||||
13.3 GHz VCO, 10 MHz offset | –143 | |||||
13.3 GHz VCO, 90 MHz offset | –155 | |||||
14.5 GHz VCO, 10 kHz offset | –73 | |||||
14.5 GHz VCO, 100 kHz offset | –99 | |||||
14.5 GHz VCO, 1 MHz offset | –121 | |||||
14.5 GHz VCO, 10 MHz offset | –143 | |||||
14.5 GHz VCO, 90 MHz offset | –152 | |||||
tVCO_CAL | VCO calibration speed, switch across the entire frequency band, FOSC = 200 MHz, FPD = 100 MHz(6) | No assist | 50 | µs | ||
Close frequency | 20 | |||||
KVCO | VCO gain | 8 GHz | 89 | MHz/V | ||
9.2 GHz | 93 | |||||
10.3 GHz | 110 | |||||
11.3 GHz | 124 | |||||
12.5 GHz | 189 | |||||
13.3 GHz | 182 | |||||
14.5 GHz | 205 | |||||
|ΔTCL| | Allowable temperature drift when VCO is not re-calibrated | 125 | °C | |||
H2 | VCO second harmonic | FVCO = 8 GHz, divider disabled | -30 | dBc | ||
H3 | VCO third harmonic | FVCO = 8 GHz, divider disabled | -40 | |||
SYNC PIN AND PHASE ALIGNMENT | ||||||
FOSCIN_SYNC | Maximum usable OSCIN frequency with SYNC pin | Category 3 (int LO mode) | 0 | 100 | MHz | |
Category 1 or 2 | 0 | 1400 | ||||
DIGITAL INTERFACE (SCK, SDI, CSB, MUXOUT, SYNC, CE) | ||||||
VIH | High level input voltage | 1.4 | VCC | V | ||
VIL | Low level input voltage | 0 | 0.4 | V | ||
IIH | High level input current | -50 | 50 | µA | ||
IIL | Low level input current | -50 | 50 | µA | ||
VOH | High level output voltage | IL = –5 mA | VCC – 0.55 | V | ||
VOL | High level output current | IL = 5 mA | 0.55 | V |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
SYNC | |||||
tSETUP | Setup time for pin relative to OSCIN rising edge | 2.5 | ns | ||
tHOLD | Hold time for pin relative to OSCIN rising edge | 2 | ns | ||
DIGITAL WRITE INTERFACE(1) | |||||
FSPI_WRITE | SPI write speed | 50 | MHz | ||
tES | Clock to enable low time | 5 | ns | ||
tCS | Data to clock setup time | 2 | ns | ||
tCH | Data to clock hold time | 2 | ns | ||
tCWH | Clock pulse width high | 5 | ns | ||
tCWL | Clock pulse width low | 10 | ns | ||
tCES | Enable to clock setup time | 10 | ns | ||
tEWH | Enable pulse width high | 10 | ns | ||
DIGITAL READBACK INTERFACE(2) | |||||
FSPI_READ | SPI readback speed | 50 | MHz | ||
tES | Clock to enable low time | 10 | ns | ||
tCS | Clock to data wait time | 10 | ns | ||
tCWH | Clock pulse width high | 10 | ns | ||
tCWL | Clock pulse width low | 10 | ns | ||
tCES | Enable to clock setup time | 10 | ns | ||
tEWH | Enable pulse width high | 10 | ns |
There are several other considerations for writing on the SPI:
There are several other considerations for SPI readback:
The LMX8410L is a high-performance I/Q demodulator with an RF input range of 4 to 10 GHz and an IF output range of DC to 1350 MHz. This device integrates many components to allow high system performance as well as simplified design. There is an integrated synthesizer that generates wide-band frequencies at very low phase noise, with signal carefully conditioned for driving the mixer LO port. The RF input is single ended, enabled by an integrated wide-band RF balun at the front end. The two mixers on each I/Q channel are highly linear with optimized filtering and interfacing with components on each port. The IF amplifier is a high gain and high linearity component, saving users from matching discrete amplifiers and being restricted by common mode voltages typically encountered when interfacing mixers and ADC’s. In addition to high linearity and low noise performance, the LMX8410L comes equipped with many features to further optimize certain parameters. The automatic DC offset calibration is run by an internal automatic algorithm which will sense and tune the DC offset between the N and P sides of the differential signal of each IF amplifier, thus ensuring optimal performance when directly DC coupled to the ADC. The I/Q calibration knob allows tuning blocks within the mixer and IF amplifier to balance both the gain and the phase of the I/Q output signals, thus giving the user capability to adjust and achieve high image rejection. The internal synthesizer also has a feature of synchronization, which allows multiple LMX8410L designed in parallel to have synchronized LO signal phase.