• Menu
  • Product
  • Email
  • PDF
  • Order now
  • 支持对单节电池进行快速充电的 BQ25910 I2C 控制型 6A 三级开关模式并联电池充电器

    • ZHCSHR0B September   2017  – September 2019 BQ25910

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • 支持对单节电池进行快速充电的 BQ25910 I2C 控制型 6A 三级开关模式并联电池充电器
  1. 1 特性
  2. 2 应用
  3. 3 说明
    1.     简化原理图
  4. 4 修订历史记录
  5. 5 Pin Configuration and Functions
    1.     Pin Functions
  6. 6 Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. 7 Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Device Power-On-Reset (POR)
      2. 7.3.2  Device Power Up from Battery without Input Source
      3. 7.3.3  Device Power Up from Input Source
      4. 7.3.4  Power Up REGN LDO
      5. 7.3.5  Poor Source Qualification
      6. 7.3.6  Converter Power-Up
      7. 7.3.7  Three-Level Buck Converter Theory of Operation
      8. 7.3.8  Host Mode and Default Mode
        1. 7.3.8.1 Host Mode and Default Mode in BQ25910
      9. 7.3.9  Battery Charging Management
        1. 7.3.9.1 Autonomous Charging Cycle
      10. 7.3.10 Master Charger and Parallel Charger Interactions
      11. 7.3.11 Battery Charging Profile
        1. 7.3.11.1 Charging Termination
        2. 7.3.11.2 Differential Battery Voltage Remote Sensing
        3. 7.3.11.3 Charging Safety Timer
    4. 7.4 Device Functional Modes
      1. 7.4.1 Lossless Current Sensing
      2. 7.4.2 Dynamic Power Management
      3. 7.4.3 Interrupt to Host (INT)
      4. 7.4.4 Protections
        1. 7.4.4.1 Voltage and Current Monitoring
          1. 7.4.4.1.1 Input Over-Voltage (VVBUS_OV)
          2. 7.4.4.1.2 Input Under-Voltage (VPOORSRC)
          3. 7.4.4.1.3 Flying Capacitor Over- or Under-Voltage Protection (VCFLY_OVP and VCFLY_UVP)
          4. 7.4.4.1.4 Over Current Protection
        2. 7.4.4.2 Thermal Regulation and Thermal Shutdown
        3. 7.4.4.3 Battery Protection
          1. 7.4.4.3.1 Battery Over-Voltage Protection (BATOVP)
    5. 7.5 Programming
      1. 7.5.1 Serial Interface
      2. 7.5.2 Data Validity
      3. 7.5.3 START and STOP Conditions
      4. 7.5.4 Byte Format
      5. 7.5.5 Acknowledge (ACK) and Not Acknowledge (NACK)
      6. 7.5.6 Slave Address and Data Direction Bit
      7. 7.5.7 Single Read and Write
      8. 7.5.8 Multi-Read and Multi-Write
    6. 7.6 Register Maps
      1. 7.6.1 I2C Registers
        1. 7.6.1.1  Battery Voltage Regulation Limit Register (Address = 0h) [reset = AAh]
          1. Table 5. REG00 Register Field Descriptions
        2. 7.6.1.2  Charger Current Limit Register (Address = 1h) [reset = 46h]
          1. Table 6. REG01 Register Field Descriptions
        3. 7.6.1.3  Input Voltage Limit Register (Address = 2h) [reset = 04h]
          1. Table 7. REG02 Register Field Descriptions
        4. 7.6.1.4  Input Current Limit Register (Address = 3h) [reset = 13h]
          1. Table 8. REG03 Register Field Descriptions
        5. 7.6.1.5  Reserved Register (Address = 4h) [reset = 03h]
          1. Table 9. REG04 Register Field Descriptions
        6. 7.6.1.6  Charger Control 1 Register (Address = 5h) [reset = 9Dh]
          1. Table 10. REG05 Register Field Descriptions
        7. 7.6.1.7  Charger Control 2 Register (Address = 6h) [reset = 33h]
          1. Table 11. REG06 Register Field Descriptions
        8. 7.6.1.8  INT Status Register (Address = 7h) [reset = X]
          1. Table 12. REG07 Register Field Descriptions
        9. 7.6.1.9  FAULT Status Register (Address = 8h) [reset = X]
          1. Table 13. REG08 Register Field Descriptions
        10. 7.6.1.10 INT Flag Status Register (Address = 9h) [reset = 00h]
          1. Table 14. REG09 Register Field Descriptions
        11. 7.6.1.11 FAULT Flag Register (Address = Ah) [reset = 00h]
          1. Table 15. REG0A Register Field Descriptions
        12. 7.6.1.12 INT Mask Register (Address = Bh) [reset = 00h]
          1. Table 16. REG0h Register Field Descriptions
        13. 7.6.1.13 FAULT Mask Register (Address = Ch) [reset = 00h]
          1. Table 17. REG0C Register Field Descriptions
        14. 7.6.1.14 Part Information Register (Address = Dh) [reset = 0Ah]
          1. Table 18. REG0D Register Field Descriptions
  8. 8 Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 External Passive Recommendation
        2. 8.2.2.2 Inductor Selection
        3. 8.2.2.3 Input Capacitor
        4. 8.2.2.4 Flying Capacitor
        5. 8.2.2.5 Output Capacitor
      3. 8.2.3 Application Curves
  9. 9 Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 第三方产品免责声明
        1. 11.1.1.1 第三方产品免责声明
    2. 11.2 接收文档更新通知
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 Glossary
  12. 12机械、封装和可订购信息
  13. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

支持对单节电池进行快速充电的 BQ25910 I2C 控制型 6A 三级开关模式并联电池充电器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 并联充电器可在双充电器配置下提供快速充电
  • 高效的 750kHz 开关模式三级降压并联充电器
    • 降低了纹波以支持低厚度电感器
    • 在 1.5A 电流(5V 输入)下具有 95.4% 的充电效率
    • 在 3A 电流(9V 输入)下具有 93.3% 的充电效率
    • 与传统小尺寸降压转换器相比,效率更加出色
  • 单个输入,支持 USB 输入和可调高电压适配器
    • 支持 3.9V 至 14V 输入电压范围,绝对最大输入电压额定值为 20V
    • 输入电流限制(500mA 至 3.6A,分辨率为 100mA),支持 USB2.0、USB3.0 标准和高电压适配器
    • 通过高达 14V 的输入电压限制 (VINDPM) 进行最大功率跟踪
  • 灵活的 I2C 模式,可实现最优系统性能
  • 高集成度包括所有 MOSFET、电流感应和环路补偿
    • 无损充电电流感应,无需感应电阻器
  • 待机模式下具有小于 10µA 的低电池泄漏电流
  • 高精度
    • ±0.4% 充电电压调节
    • ±10% 充电电流调节
    • ±7.5% 输入电流调节
    • 远程差分电池电量感应
  • 安全
    • 热调节和热关断
    • 输入 UVLO 和过压保护
    • 电池过压保护
    • 输入动态电源管理 (DPM)
    • 充电安全计时器
    • 飞跨电容短路保护
    • 输出电压短路保护
  • 采用 36 焊球 WCSP 封装

2 应用

  • 智能手机
  • 平板电脑
  • 无线充电
  • 便携式电子产品
  • 电子销售点 (ePOS)

3 说明

BQ25910 是一款适用于单节锂离子和锂聚合物电池的集成式三级开关模式并联电池充电管理器件。利用三级转换器,可在保持最高开关模式工作效率的同时降低解决方案尺寸,并提高功率密度。 该器件支持通过高输入电压为各种便携设备快速充电。该解决方案集成了反向阻断 FET (QBLK) 和四个开关 FET(QHSA、QHSB、QLSB、QLSA)。具有充电和系统设置的 I2C 串行接口使得此器件成为一个真正的灵活解决方案。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
BQ25910 DSBGA (36) 2.41mm x 2.44mm
  1. 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。

简化原理图

BQ25910 bq25910-simplified-schematic.gif

4 修订历史记录

Changes from A Revision (February 2018) to B Revision

  • Changed tBAT_LOWV_DGL from 20 ms to 170 ms in Timing Requirements sectionGo
  • Changed DEV_REV default value from 0b001 to 0b010 in REG0D register Part Information Register (Address = Dh) [reset = 0Ah]Go

Changes from * Revision (September 2017) to A Revision

  • Changed 将“预告信息”更改为“生产数据”Go

5 Pin Configuration and Functions

BQ25910-YFF (I2C controlled)
36-Pin DSBGA
Top View
BQ25910 pin_yff_lvsdu0.gif
1. Top View = Xray through a soldered down part with A1 starting in upper left hand corner.

Pin Functions

PIN I/O DESCRIPTION
NAME NO.
BATN F4 AI Negative Battery Sense Terminal – Kelvin connect via 100-Ω resistor as close as possible to negative battery terminal
BATP F5 AI Positive Battery Sense Terminal – Kelvin connect via 100-Ω resistor as close as possible to positive battery terminal
CAUX F2 P Auxiliary Capacitor – Bypass CAUX to GND with at least a 4.7-μF, 10-V ceramic capacitor
CDRV+ D1 P Gate Drive Supply Positive Terminal – CDRV is used to generate multilevel gate drive rails.
Connect a 220-nF, 6.3-V ceramic capacitor across CDRV+ and CDRV-.
CDRV– E1 P Gate Drive Supply Negative Terminal – CDRV is used to generate multilevel gate drive rails.
Connect a 220-nF, 6.3-V ceramic capacitor across DRV+ and DRV-.
CFLY+ A3 P Flying Capacitor Positive Terminal – Connect 20-μF, 16-V ceramic capacitor across CFLY+ and CFLY–. Refer to Application and Implementation section for more information on selecting CFLY.
B3
C3
D3
CFLY– A5 P Flying Capacitor Negative Terminal – Connect 20-μF, 16-V ceramic capacitor across CFLY+ and CFLY–. Refer to Application and Implementation section for more information on selecting CFLY.
B5
C5
D5
E5
GND A6 - Ground Return
B6
C6
D6
E6
IND_SNS F6 AI Output Inductor Sense Input – Kelvin connect as close as possible to the output of the switched inductor.
INT E3 DO Open-Drain Interrupt Output – Connect INT to the logic rail via a 10-kΩ resistor. The INT pin sends active low, 256-μs pulse to the host to report charger device status and fault.
PMID A2 P Reverse Blocking MOSFET and QHSA MOSFET Connection – Given the total input capacitance, place 1 μF on VBUS, and the rest on PMID, as close to the device as possible. Typical value: 10-μF, 25-V ceramic capacitor
B2
C2
D2
REGN F3 P Gate Drive Supply – Bias supply for internal MOSFETs driver and device. Bypass REGN to GND with a 4.7-μF, 10-V ceramic capacitor.
SCL F1 DI I2C Interface Open-Drain Clock Line – Connect SCL to the logic rail through a 10-kΩ resistor.
SDA E2 DIO I2C Interface Open-Drain Data Line – Connect SDA to the logic rail through a 10-kΩ resistor.
SW A4 P Inductor Connection – Connect to the switched side of the external inductor (Recommended: 330 nH for up to 9-V applications or 470 nH for up to 12-V applications). Refer to Application and Implementation section for more information on selecting inductor.
B4
C4
D4
E4
VBUS A1 P Input Supply – VBUS is connected to the external DC supply. Bypass VBUS to GND with at least 1-μF, 25-V ceramic capacitor, placed as close to the device as possible.
B1
C1

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage range (with respect to GND) VBUS (converter not switching) –2 20 V
PMID (converter not switching) –0.3 20 V
CDRV+, CDRV- –0.3 20 V
CFLY+ –0.3 16(2) V
CFLY+ to SW, SW to CFLY–, CFLY– to GND, CAUX to GND DC –0.3 7 V
Pulse < 30ns –0.3 11 V
BATP, BATN, IND_SNS –0.3 6 V
REGN –0.3 6 V
Voltage range (with respect to GND) SDA, SCL, /INT –0.3 6 V
Output sink current /INT 6 mA
Junction Temperature, TJ –40 150 °C
Storage temperature, Tstg –40 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) This condition is contingent on the fact that 0V < VCFLY < 8V

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale