• Menu
  • Product
  • Email
  • PDF
  • Order now
  • LMT85-Q1 1.8、SC70 模拟温度传感器

    • ZHCSH37 October   2017 LMT85-Q1

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • LMT85-Q1 1.8、SC70 模拟温度传感器
  1. 1 特性
  2. 2 应用
  3. 3 说明
  4. 4 修订历史记录
  5. 5 Device Comparison Tables
  6. 6 Pin Configuration and Functions
  7. 7 Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Accuracy Characteristics
    6. 7.6 Electrical Characteristics
    7. 7.7 Typical Characteristics
  8. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 LMT85-Q1 Transfer Function
    4. 8.4 Device Functional Modes
      1. 8.4.1 Mounting and Thermal Conductivity
      2. 8.4.2 Output and Noise Considerations
      3. 8.4.3 Capacitive Loads
      4. 8.4.4 Output Voltage Shift
  9. 9 Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Connection to an ADC
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Conserving Power Dissipation With Shutdown
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 接收文档更新通知
    2. 12.2 社区资源
    3. 12.3 商标
    4. 12.4 静电放电警告
    5. 12.5 Glossary
  13. 13机械、封装和可订购信息
  14. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

LMT85-Q1 1.8、SC70 模拟温度传感器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • LMT85-Q1 符合 AEC-Q100 标准且适用于汽车 应用:
    • 器件温度等级 0:–40°C 至 +150°C
    • 器件人体放电模型 (HBM) 静电放电 (ESD) 分类等级 2
    • 器件 CDM ESD 分类等级 C6
  • 非常精确:典型值 ±0.4°C
  • 1.8V 低压运行
  • -8.2mV/°C 的平均传感器增益
  • 5.4µA 低静态电流
  • 宽温度范围:–50°C 至 150°C
  • 输出受到短路保护
  • 具有 ±50µA 驱动能力的推挽输出
  • 封装尺寸兼容符合行业标准的 LM20/19 和 LM35 温度传感器
  • 具有成本优势的热敏电阻替代产品

2 应用

  • 信息娱乐系统与仪表组
  • 动力传动系统
  • 烟雾和热量探测器
  • 无人机
  • 电器

3 说明

LMT85-Q1 是一款高精度 CMOS 温度传感器,其典型精度为 ±0.4°C(最大值为 ±2.7°C),且线性模拟输出电压与温度成反比关系。1.8V 工作电源电压、5.4μA 静态电流和 0.7ms 开通时间可实现有效的功率循环架构,以最大限度地降低无人机和传感器节点等电池供电 应用 的功耗。LMT85-Q1 器件符合 AEC-Q100 0 级标准,在整个工作温度范围内可保持 ±2.7°C 的最大精度,且无需校准;因此 LMT85-Q1 适用于汽车 应用, 例如信息娱乐系统、仪表组和动力传动系统。 得益于宽工作范围内的精度和其他 特性, 使得 LMT85-Q1 成为热敏电阻的优质替代产品。

对于具有不同平均传感器增益和类似精度的器件,请参阅 类似替代器件

器件信息(1)

器件型号 封装 封装尺寸(标称值)
LMT85-Q1 SOT (5) 2.00mm × 1.25mm
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

热时间常量

LMT85-Q1 D003_SNIS167.gif
* 快速热响应 NTC

输出电压与温度间的关系

LMT85-Q1 celsius_temp_NEW_SNIS168.gif

4 修订历史记录

日期 修订版本 说明
2017 年 10 月 * 初始发行版将 SNIS200 中的汽车器件移到了单独的数据表中.

5 Device Comparison Tables

Table 1. Available Device Packages

ORDER NUMBER(1) PACKAGE PIN BODY SIZE (NOM) MOUNTING TYPE
LMT85DCK SOT (AKA(2): SC70, DCK) 5 2.00 mm × 1.25 mm Surface Mount
LMT85LP TO-92 (AKA(2): LP) 3 4.30 mm × 3.50 mm Through-hole; straight leads
LMT85LPG TO-92S (AKA(2): LPG) 3 4.00 mm × 3.15 mm Through-hole; straight leads
LMT85LPM TO-92 (AKA(2): LPM) 3 4.30 mm × 3.50 mm Through-hole; formed leads
LMT85DCK-Q1 SOT (AKA(2): SC70, DCK) 5 2.00 mm × 1.25 mm Surface Mount
(1) For all available packages and complete order numbers, see the Package Option addendum at the end of the data sheet.
(2) AKA = Also Known As

Table 2. Comparable Alternative Devices

DEVICE NAME AVERAGE OUTPUT SENSOR GAIN POWER SUPPLY RANGE
LMT84-Q1 –5.5 mV/°C 1.5 V to 5.5 V
LMT85-Q1 –8.2 mV/°C 1.8 V to 5.5 V
LMT86-Q1 –10.9 mV/°C 2.2 V to 5.5 V
LMT87-Q1 –13.6 mV/°C 2.7 V to 5.5 V

6 Pin Configuration and Functions

DCK Package
5-Pin SOT/SC70
(Top View)
LMT85-Q1 top_view_see_NS_package_number_MAA05A_nis168.gif

Pin Functions

PIN TYPE DESCRIPTION
NAME SOT (SC70) EQUIVALENT CIRCUIT FUNCTION
GND 2(1) , 5 Ground N/A Power Supply Ground
OUT 3 Analog
Output
LMT85-Q1 pin_descrip_table_row_two_nis167.gif Outputs a voltage that is inversely proportional to temperature
VDD 1, 4 Power N/A Positive Supply Voltage
(1) Direct connection to the back side of the die

7 Specifications

7.1 Absolute Maximum Ratings

See (1)(3)
MIN MAX UNIT
Supply voltage −0.3 6 V
Voltage at output pin −0.3 (VDD + 0.5) V
Output current –7 7 mA
Input current at any pin (2) –5 5 mA
Maximum junction temperature (TJMAX) 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability
(2) When the input voltage (VI) at any pin exceeds power supplies (VI < GND or VI > V), the current at that pin should be limited to 5 mA.
(3) Soldering process must comply with Reflow Temperature Profile specifications. Refer towww.ti.com/packaging .

7.2 ESD Ratings

VALUE UNIT
LMT85DCK-Q1 in SC70 package
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2500 V
Charged-device model (CDM), per AEC Q100-011 ±1000
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.3 Recommended Operating Conditions

MIN MAX UNIT
Specified temperature TMIN ≤ TA ≤ TMAX  °C
−50 ≤ TA ≤ 150 °C
Supply voltage (VDD) 1.8 5.5 V

7.4 Thermal Information(1)

THERMAL METRIC(2) LMT85-Q1 UNIT
DCK (SOT/SC70)
5 PINS
RθJA Junction-to-ambient thermal resistance (3)(4) 275 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 84 °C/W
RθJB Junction-to-board thermal resistance 56 °C/W
ψJT Junction-to-top characterization parameter 1.2 °C/W
ψJB Junction-to-board characterization parameter 55 °C/W
(1) For information on self-heating and thermal response time, see section Mounting and Thermal Conductivity.
(2) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.
(3) The junction to ambient thermal resistance (RθJA) under natural convection is obtained in a simulation on a JEDEC-standard, High-K board as specified in JESD51-7, in an environment described in JESD51-2. Exposed pad packages assume that thermal vias are included in the PCB, per JESD 51-5.
(4) Changes in output due to self-heating can be computed by multiplying the internal dissipation by the thermal resistance.

7.5 Accuracy Characteristics

These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in Table 3.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
Temperature accuracy (3) TA = TJ= 20°C to 150°C; VDD = 1.8 V to 5.5 V –2.7 ±0.4 2.7 °C
TA = TJ= 0°C to 150°C; VDD = 1.9 V to 5.5 V –2.7 ±0.7 2.7 °C
TA = TJ= 0°C to 150°C; VDD = 2.6 V to 5.5 V ±0.3 °C
TA = TJ= –50°C to 0°C; VDD = 2.3 V to 5.5 V –2.7 ±0.7 2.7 °C
TA = TJ= –50°C to 0°C; VDD = 2.9 V to 5.5 V ±0.25 °C
(1) Limits are specific to TI's AOQL (Average Outgoing Quality Level).
(2) Typicals are at TJ = TA = 25°C and represent most likely parametric norm.
(3) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Transfer Table at the specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no DC load.

7.6 Electrical Characteristics

Unless otherwise noted, these specifications apply for VDD = +1.8V to +5.5V. MIN and MAX limits apply for TA = TJ = TMIN to TMAX, unless otherwise noted; typical values apply for TA = TJ = 25°C.
PARAMETER TEST CONDITIONS MIN (1) TYP (2) MAX (1) UNIT
Average sensor gain (output transfer function slope) –30°C and 90°C used to calculate average sensor gain –8.2 mV/°C
Load regulation (3) Source ≤ 50 μA, (VDD - VOUT) ≥ 200 mV –1 –0.22 mV
Sink ≤ 50 μA, VOUT ≥ 200 mV 0.26 1 mV
Line regulation (4) 200 μV/V
IS Supply current TA = TJ = 30°C to 150°C, (VDD - VOUT) ≥ 100 mV 5.4 8.1 μA
TA = TJ = -50°C to 150°C, (VDD - VOUT) ≥ 100 mV 5.4 9 μA
CL Output load capacitance 1100 pF
Power-on time (5) CL= 0 pF to 1100 pF 0.7 1.9 ms
Output drive TA = TJ = 25°C –50 +50 µA
(1) Limits are specific to TI's AOQL (Average Outgoing Quality Level).
(2) Typicals are at TJ = TA = 25°C and represent most likely parametric norm.
(3) Source currents are flowing out of the LMT85-Q1. Sink currents are flowing into the LMT85-Q1.
(4) Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in Output Voltage Shift.
(5) Specified by design and characterization.

7.7 Typical Characteristics

LMT85-Q1 temp_error_vs_temp_nis168.gif Figure 1. Temperature Error vs Temperature
LMT85-Q1 supply_current_vs_temp_nis168.gif Figure 3. Supply Current vs Temperature
LMT85-Q1 load_reg_sourcing_current_nis168.gif Figure 5. Load Regulation, Sourcing Current
LMT85-Q1 change_in_vout_vs_overhead_voltage_nis168.gif Figure 7. Change in Vout vs Overhead Voltage
LMT85-Q1 output_voltage_vs_supply_voltage_nis168.gif Figure 9. Output Voltage vs Supply Voltage
LMT85-Q1 C002_SNIS168.png Figure 2. Minimum Operating Temperature vs
Supply Voltage
LMT85-Q1 supply_current_vs_supply_voltage_nis168.gif Figure 4. Supply Current vs Supply Voltage
LMT85-Q1 load_reg_sinking_current_nis168.gif Figure 6. Load Regulation, Sinking Current
LMT85-Q1 supply_noise_gain_vs_freq_nis168.gif Figure 8. Supply-Noise Gain vs Frequency

8 Detailed Description

8.1 Overview

The LMT85-Q1 is an analog output temperature sensor. The temperature sensing element is comprised of a simple base emitter junction that is forward biased by a current source. The temperature-sensing element is then buffered by an amplifier and provided to the OUT pin. The amplifier has a simple push-pull output stage thus providing a low impedance output source.

8.2 Functional Block Diagram

Full-Range Celsius Temperature Sensor (−50°C to 150°C).

LMT85-Q1 FBD_SNIS168.gif

8.3 Feature Description

8.3.1 LMT85-Q1 Transfer Function

The output voltage of the LMT85-Q1, across the complete operating temperature range, is shown in Table 3. This table is the reference from which the LMT85 accuracy specifications (listed in the Accuracy Characteristics section) are determined. This table can be used, for example, in a host processor look-up table. A file containing this data is available for download at the LMT85-Q1 product folder under Tools and Software Models.

Table 3. LMT85-Q1 Transfer Table

TEMP
(°C)
VOUT
(mV)
TEMP
(°C)
VOUT
(mV)
TEMP
(°C)
VOUT
(mV)
TEMP
(°C)
VOUT
(mV)
TEMP
(°C)
VOUT
(mV)
-50 1955 -10 1648 30 1324 70 991 110 651
-49 1949 -9 1639 31 1316 71 983 111 642
-48 1942 -8 1631 32 1308 72 974 112 634
-47 1935 -7 1623 33 1299 73 966 113 625
-46 1928 -6 1615 34 1291 74 957 114 617
-45 1921 -5 1607 35 1283 75 949 115 608
-44 1915 -4 1599 36 1275 76 941 116 599
-43 1908 -3 1591 37 1267 77 932 117 591
-42 1900 -2 1583 38 1258 78 924 118 582
-41 1892 -1 1575 39 1250 79 915 119 573
-40 1885 0 1567 40 1242 80 907 120 565
-39 1877 1 1559 41 1234 81 898 121 556
-38 1869 2 1551 42 1225 82 890 122 547
-37 1861 3 1543 43 1217 83 881 123 539
-36 1853 4 1535 44 1209 84 873 124 530
-35 1845 5 1527 45 1201 85 865 125 521
-34 1838 6 1519 46 1192 86 856 126 513
-33 1830 7 1511 47 1184 87 848 127 504
-32 1822 8 1502 48 1176 88 839 128 495
-31 1814 9 1494 49 1167 89 831 129 487
-30 1806 10 1486 50 1159 90 822 130 478
-29 1798 11 1478 51 1151 91 814 131 469
-28 1790 12 1470 52 1143 92 805 132 460
-27 1783 13 1462 53 1134 93 797 133 452
-26 1775 14 1454 54 1126 94 788 134 443
-25 1767 15 1446 55 1118 95 779 135 434
-24 1759 16 1438 56 1109 96 771 136 425
-23 1751 17 1430 57 1101 97 762 137 416
-22 1743 18 1421 58 1093 98 754 138 408
-21 1735 19 1413 59 1084 99 745 139 399
-20 1727 20 1405 60 1076 100 737 140 390
-19 1719 21 1397 61 1067 101 728 141 381
-18 1711 22 1389 62 1059 102 720 142 372
-17 1703 23 1381 63 1051 103 711 143 363
-16 1695 24 1373 64 1042 104 702 144 354
-15 1687 25 1365 65 1034 105 694 145 346
-14 1679 26 1356 66 1025 106 685 146 337
-13 1671 27 1348 67 1017 107 677 147 328
-12 1663 28 1340 68 1008 108 668 148 319
-11 1656 29 1332 69 1000 109 660 149 310
150 301

Although the LMT85-Q1 is very linear, its response does have a slight umbrella parabolic shape. This shape is very accurately reflected in Table 3. The Transfer Table can be calculated by using the parabolic equation (Equation 1).

Equation 1. LMT85-Q1 ParaEq_G01_SNIS168.gif

The parabolic equation is an approximation of the transfer table and the accuracy of the equation degrades slightly at the temperature range extremes. Equation 1 can be solved for T resulting in:

Equation 2. LMT85-Q1 ParaEq_GainSolutionForT1_SNIS168.gif

For an even less accurate linear transfer function approximation, a line can easily be calculated over the desired temperature range using values from the Table and a two-point equation (Equation 3):

Equation 3. LMT85-Q1 equation_1_nis168.gif

where

  • V is in mV,
  • T is in °C,
  • T1 and V1 are the coordinates of the lowest temperature,
  • and T2 and V2 are the coordinates of the highest temperature.

For example, if the user wanted to resolve this equation, over a temperature range of 20°C to 50°C, they would proceed as follows:

Equation 4. LMT85-Q1 equation_2_nis168.gif
Equation 5. LMT85-Q1 equation_3_nis168.gif
Equation 6. LMT85-Q1 equation_4_nis168.gif

Using this method of linear approximation, the transfer function can be approximated for one or more temperature ranges of interest.

8.4 Device Functional Modes

8.4.1 Mounting and Thermal Conductivity

The LMT85-Q1 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface.

To ensure good thermal conductivity, the backside of the LMT85 die is directly attached to the GND pin. The temperatures of the lands and traces to the other leads of the LMT85-Q1 will also affect the temperature reading.

Alternatively, the LMT85-Q1 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LMT85-Q1 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates a short circuit from the output to ground or VDD, the output from the LMT85 will not be correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces.

The thermal resistance junction to ambient (RθJA or θJA) is the parameter used to calculate the rise of a device junction temperature due to its power dissipation. Use Equation 7 to calculate the rise in the LMT85-Q1 die temperature:

Equation 7. LMT85-Q1 equation_5_nis168.gif

where

  • TA is the ambient temperature,
  • IS is the supply current,
  • ILis the load current on the output,
  • and VO is the output voltage.

For example, in an application where TA = 30°C, VDD = 5 V, IS = 5.4 μA, VOUT = 1324 mV, and IL = 2 μA, the junction temperature would be 30.014°C, showing a self-heating error of only 0.014°C. Because the junction temperature of the LMT85-Q1 is the actual temperature being measured, take care to minimize the load current that the LMT85-Q1 is required to drive. shows the thermal resistance of the LMT85-Q1.

8.4.2 Output and Noise Considerations

A push-pull output gives the LMT85-Q1 the ability to sink and source significant current. This is beneficial when, for example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications the source current is required to quickly charge the input capacitor of the ADC. The LMT85-Q1 device is ideal for this and other applications which require strong source or sink current.

The LMT85-Q1 supply-noise gain (the ratio of the AC signal on VOUT to the AC signal on VDD) was measured during bench tests. The typical attenuation is shown in Figure 8 found in the Typical Characteristics. A load capacitor on the output can help to filter noise.

For operation in very noisy environments, some bypass capacitance should be present on the supply within approximately 5 centimeters of the LMT85-Q1.

8.4.3 Capacitive Loads

The LMT85-Q1 handles capacitive loading well. In an extremely noisy environment, or when driving a switched sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any precautions, the LMT85-Q1 can drive a capacitive load less than or equal to 1100 pF as shown in Figure 10. For capacitive loads greater than 1100 pF, a series resistor may be required on the output, as shown in Figure 11.

LMT85-Q1 no_decoupling_cap_loads_less_nis168.gif Figure 10. LMT85-Q1 No Decoupling Required for Capacitive Loads Less Than 1100 pF
LMT85-Q1 series_resister_cap_loads_greater_nis168.gif Figure 11. LMT85-Q1 with Series Resistor for Capacitive Loading Greater Than 1100 pF

Table 4. Recommended Series Resistor Values

CLOAD MINIMUM RS
1.1 nF to 99 nF 3 kΩ
100 nF to 999 nF 1.5 kΩ
1 μF 800 Ω

8.4.4 Output Voltage Shift

The LMT85-Q1 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the operating range of the device. The location of the shift is determined by the relative levels of VDD and VOUT. The shift typically occurs when VDD- VOUT = 1 V.

This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in VDD or VOUT. Because the shift takes place over a wide temperature change of 5°C to 20°C, VOUT is always monotonic. The accuracy specifications in the Accuracy Characteristics table already include this possible shift.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The LMT85-Q1 features make it suitable for many general temperature-sensing applications. It can operate down to 1.8-V supply with 5.4-µA power consumption, making it ideal for battery powered devices.

9.2 Typical Applications

9.2.1 Connection to an ADC

LMT85-Q1 suggested_conn_sampling_analog_to_digital_nis168.gif Figure 12. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage

9.2.1.1 Design Requirements

Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such as the LMT85 temperature sensor and many op amps. This requirement is easily accommodated by the addition of a capacitor (CFILTER).

9.2.1.2 Detailed Design Procedure

The size of CFILTER depends on the size of the sampling capacitor and the sampling frequency. Because not all ADCs have identical input stages, the charge requirements will vary. This general ADC application is shown as an example only.

9.2.1.3 Application Curve

LMT85-Q1 C001_SNIS168.png Figure 13. Analog Output Transfer Function

9.2.2 Conserving Power Dissipation With Shutdown

LMT85-Q1 conversing_power_dissipation_with_shutdown_nis168.gif Figure 14. Simple Shutdown Connection of the LMT85-Q1

9.2.2.1 Design Requirements

Because the power consumption of the LMT85-Q1 is less than 9 µA, it can simply be powered directly from any logic gate output and therefore not require a specific shutdown pin. The device can even be powered directly from a micro controller GPIO. In this way, it can easily be turned off for cases such as battery-powered systems where power savings are critical.

9.2.2.2 Detailed Design Procedure

Simply connect the VDD pin of the LMT85-Q1 directly to the logic shutdown signal from a microcontroller.

9.2.2.3 Application Curves

LMT85-Q1 LMT85_SNIS168_3p3_nl_resptim.png

INDENT:

Time: 500 µs/div; Top Trace: VDD 1 V/div;
Bottom Trace: OUT 1 V/div
Figure 15. Output Turnon Response Time Without a Capacitive Load and VDD = 3.3 V
LMT85-Q1 LMT85_SNIS168_3p3_1nF_resptim.png

INDENT:

Time: 500 µs/div; Top trace: VDD 1V/div;
Bottom trace: OUT 1 V/div
Figure 17. Output Turnon Response Time With 1.1-nF Capacitive Load and VDD = 3.3 V
LMT85-Q1 LMT85_SNIS168_5p0_nl_resptim.png

INDENT:

Time: 500 µs/div; Top trace: VDD 2 V/div;
Bottom trace: OUT 1 V/div
Figure 16. Output Turnon Response Time Without a Capacitive Load and VDD = 5 V
LMT85-Q1 LMT85_SNIS168_5p0_1nF_resptim.png

INDENT:

Time: 500 µs/div; Top trace: VDD 2 V/div;
Bottom trace: OUT 1 V/div
Figure 18. Output Turnon Response Time With 1.1-nF Capacitive Load and VDD = 5 V

10 Power Supply Recommendations

The low supply current and supply range (1.8 V to 5.5 V) of the LMT85-Q1 allow the device to easily be powered from many sources. Power supply bypassing is optional and is mainly dependent on the noise on the power supply used. In noisy systems it may be necessary to add bypass capacitors to lower the noise that is coupled to the output of the LMT85-Q1.

11 Layout

11.1 Layout Guidelines

The LMT85-Q1 is extremely simple to layout. If a power-supply bypass capacitor is used, it should be connected as shown in the Layout Example

11.2 Layout Example

LMT85-Q1 LayoutExample_SNIS168.gif Figure 19. SC70 Package Recommended Layout

12 器件和文档支持

12.1 接收文档更新通知

要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.2 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

    TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。
    设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

12.3 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.4 静电放电警告

esds-image

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。



重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949要求,TI不承担任何责任。

产品

  • 数字音频: www.ti.com.cn/audio
  • 放大器和线性器件: www.ti.com.cn/amplifiers
  • 数据转换器: www.ti.com.cn/dataconverters
  • DLP® 产品: www.dlp.com
  • DSP - 数字信号处理器: www.ti.com.cn/dsp
  • 时钟和计时器: www.ti.com.cn/clockandtimers
  • 接口: www.ti.com.cn/interface
  • 逻辑: www.ti.com.cn/logic
  • 电源管理: www.ti.com.cn/power
  • 微控制器 (MCU): www.ti.com.cn/microcontrollers
  • RFID 系统: www.ti.com.cn/rfidsys
  • OMAP应用处理器: www.ti.com/omap
  • 无线连通性: www.ti.com.cn/wirelessconnectivity

应用

  • 通信与电信: www.ti.com.cn/telecom
  • 计算机及周边: www.ti.com.cn/computer
  • 消费电子: www.ti.com/consumer-apps
  • 能源: www.ti.com/energy
  • 工业应用: www.ti.com.cn/industrial
  • 医疗电子: www.ti.com.cn/medical
  • 安防应用: www.ti.com.cn/security
  • 汽车电子: www.ti.com.cn/automotive
  • 视频和影像: www.ti.com.cn/video

德州仪器在线技术支持社区: www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122
Copyright© 2016, 德州仪器半导体技术(上海)有限公司

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale