• Menu
  • Product
  • Email
  • PDF
  • Order now
  • TCAN1043xx-Q1 具有 CAN FD 和唤醒功能的汽车级低功耗故障保护 CAN 收发器

    • ZHCSH19G November   2017  – December 2024 TCAN1043-Q1 , TCAN1043G-Q1 , TCAN1043H-Q1 , TCAN1043HG-Q1

      PRODUCTION DATA  

  • CONTENTS
  • SEARCH
  • TCAN1043xx-Q1 具有 CAN FD 和唤醒功能的汽车级低功耗故障保护 CAN 收发器
  1.   1
  2. 1 特性
  3. 2 应用
  4. 3 说明
  5. 4 Device Comparison Table
  6. 5 Pin Configuration and Functions
  7. 6 Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 ESD Ratings IEC Specification
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Dissipation Ratings
    7. 6.7 Electrical Characteristics
    8. 6.8 Switching Characteristics
    9. 6.9 Typical Characteristics
  8. 7 Parameter Measurement Information
  9. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Internal and External Indicator Flags (nFAULT and RXD)
      2. 8.3.2 Power-Up Flag (PWRON)
      3. 8.3.3 Wake-Up Request Flag (WAKERQ)
      4. 8.3.4 Wake-Up Source Recognition Flag (WAKESR)
      5. 8.3.5 Undervoltage Fault Flags
        1. 8.3.5.1 Undervoltage on VCC Fault
        2. 8.3.5.2 Undervoltage on VIO Fault
        3. 8.3.5.3 Undervoltage on VSUP Fault
      6. 8.3.6 CAN Bus Failure Fault Flag
      7. 8.3.7 Local Faults
        1. 8.3.7.1 TXD Dominant Timeout (TXD DTO)
        2. 8.3.7.2 TXD Shorted to RXD Fault
        3. 8.3.7.3 CAN Bus Dominant Fault
        4. 8.3.7.4 Thermal Shutdown (TSD)
        5. 8.3.7.5 RXD Recessive Fault
        6. 8.3.7.6 Undervoltage Lockout (UVLO)
        7. 8.3.7.7 Unpowered Device
        8. 8.3.7.8 Floating Terminals
        9. 8.3.7.9 CAN Bus Short Circuit Current Limiting
    4. 8.4 Device Functional Modes
      1. 8.4.1 CAN Bus States
      2. 8.4.2 Normal Mode
      3. 8.4.3 Silent Mode
      4. 8.4.4 Standby Mode
      5. 8.4.5 Go-to-Sleep Mode
      6. 8.4.6 Sleep Mode with Remote Wake and Local Wake Up Requests
        1. 8.4.6.1 Remote Wake Request via Wake Up Pattern (WUP)
        2. 8.4.6.2 Local Wake Up (LWU) via WAKE Input Terminal
      7. 8.4.7 Driver and Receiver Function Tables
      8. 8.4.8 Digital Inputs and Outputs
      9. 8.4.9 INH (Inhibit) Output
  10. 9 Application Information Disclaimer
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Bus Loading, Length and Number of Nodes
      2. 9.2.2 Detailed Design Procedures
        1. 9.2.2.1 CAN Termination
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 支持资源
    3. 10.3 商标
    4. 10.4 静电放电警告
    5. 10.5 术语表
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Mechanical, Packaging, and Orderable Information
  14. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

Data Sheet

TCAN1043xx-Q1 具有 CAN FD 和唤醒功能的汽车级低功耗故障保护 CAN 收发器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

下载最新的英语版本

1 特性

  • AEC Q100:符合汽车应用要求
    • 温度等级 1:TA = -55°C 至 125°C
    • 器件 HBM 分级等级:±16kV
    • 器件 CDM 分级等级:±1500V
  • 功能安全型
    • 可提供用于功能安全系统设计的文档
  • 符合 ISO 11898-2 (2016) 的要求
  • 所有器件均支持经典 CAN 和 2Mbps CAN FD(灵活数据速率),而“G”选项支持 5Mbps
    • 具有较短的对称传播延迟时间和快速循环次数,可增加时序裕量
    • 在有负载 CAN 网络中实现更快的数据速率
  • VIO 电平转换支持 2.8V 至 5.5V 的电压范围
  • 工作模式
    • 正常模式
    • 具有 INH 输出以及本地和远程唤醒请求功能的待机模式
    • 具有 INH 输出以及本地和远程唤醒请求的低功耗睡眠模式
  • 未供电时具有无源行为
    • 总线和逻辑终端处于高阻态(运行总线或应用上无负载)
    • 支持热插拔:在总线和 RXD 输出上可实现上电和断电无干扰运行
  • 符合或超出 EMC 标准要求
    • 符合 IEC 62228-3 – 2007 标准
    • 符合 SAE J2962-2 标准
  • 保护特性
    • 总线终端的 IEC ESD 保护:±8kV
    • 总线故障保护:±58V(非 H 型号)和 ±70V(H 型号)
    • 电源终端欠压保护
    • 驱动器显性超时 (TXD DTO):数据速率低至 9.2kbps
    • 热关断保护 (TSD)
  • 接收器共模输入电压:±30V
  • 典型循环延迟:110ns
  • 结温范围为 –55°C 至 150°C
  • 采用 SOIC (14) 封装和无引线 VSON (14) 封装 (4.5mm x 3mm),具有改进的自动光学检查 (AOI) 功能

2 应用

  • 12V 或 24V 系统应用
  • 汽车和运输
    • 高级驾驶辅助系统 (ADAS)
    • 信息娱乐系统
    • 仪表组
    • 车身电子装置和照明

3 说明

TCAN1043xx-Q1 满足 ISO 11898–2 (2016) 高速控制器局域网 (CAN) 规范的物理层要求,提供 CAN 总线和 CAN 协议控制器之间的接口。这些器件支持传统 CAN 和 CAN FD 协议,具有最高 2Mbps 的数据速率。器件型号以“G”结尾的器件专为数据速率高达 5Mbps 的 CAN FD 应用而设计。TCAN1043xx-Q1 可以(通过 INH 输出引脚)选择性地启用节点上可能存在的各种电源,从而在整个系统级别减少电池电流消耗。这使得在超低电流睡眠状态中,功率传送到除 TCAN1043xx-Q1 以外的所有系统组件,而 TCAN1043xx-Q1 则仍然处于低功耗状态,并对 CAN 总线进行监控。

在总线上检测到唤醒模式或通过 WAKE 输入请求本地唤醒时,TCAN1043xx-Q1 会通过驱动 INH 高电平的方式发起节点启动。TCAN1043xx-Q1 包括通过 VIO 端子实现的内部逻辑电平转换功能,允许直接连接到 3.3V 或 5V 控制器。该器件包含很多保护和诊断功能,包括 CAN 总线短路检测和电池连接检测。TCAN1043xx-Q1 满足 IEC 62228-3 和 J2962-2 的 ESD 和 EMC 要求,无需额外增加保护组件。

封装信息
器件型号 封装(1) 封装尺寸(2)
TCAN1043xx-Q1 SOIC (14) 8.65mm × 6mm
VSON (14) 4.5mm × 3mm
(1) 有关更多信息,请参阅节 12。
(2) 封装尺寸(长 × 宽)为标称值,并包括引脚(如适用)。


TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 功能方框图功能方框图

4 Device Comparison Table

DEVICE NUMBER BUS FAULT PROTECTION MAXIMUM DATA RATE
TCAN1043-Q1 ±58V 2Mbps
TCAN1043H-Q1 ±70V 2Mbps
TCAN1043G-Q1 ±58V 5Mbps
TCAN1043HG-Q1 ±70V 5Mbps

5 Pin Configuration and Functions

Figure 5-1 D Package, 14 Pin (SOIC)
(Top View)
Figure 5-2 DMT Package, 14 Pin (VSON)
(Top View)
Table 5-1 Pin Functions
PINS TYPE DESCRIPTION
NAME NO
TXD 1 Digital Input CAN transmit data input (low for dominant and high for recessive bus states)
GND 2 GND Ground connection
VCC 3 Supply 5V CAN bus supply voltage
RXD 4 Digital Output CAN receive data output (low for dominant and high for recessive bus states), tri-state
VIO 5 Supply I/O supply voltage
EN 6 Digital Input Enable input for mode control, integrated pull down
INH 7 High Voltage Output Can be used to control system voltage regulators
nFAULT 8 Digital Output Fault output, inverted logic
WAKE 9 High Voltage Input Wake input terminal, high voltage input
VSUP 10 Supply Reverse-blocked battery supply input
NC 11 — No connect (not internally connected)
CANL 12 Bus I/O Low-level CAN bus input/output line
CANH 13 Bus I/O High-level CAN bus input/output line
nSTB 14 Digital Input Standby input for mode control, integrated pull down

6 Specifications

6.1 Absolute Maximum Ratings

See (1)(2)
MINMAXUNIT
VSUPBattery supply (reverse-blocked) voltage range – standard versions–0.358V
Battery supply (reverse blocked) voltage range – H versions–0.370V
VCC5-V bus supply voltage–0.37V
VIOI/O level shifting voltage–0.37V
VBUSCAN bus I/O voltage range (CANH, CANL)Devices without the "H" suffix–5858V
CAN bus I/O voltage range (CANH, CANL)Devices with the "H" suffix–7070V
V(DIFF)Max differential voltage between CANH and CANLDevices without the "H" suffix–5858V
Devices with the "H" suffix–7070V
V(Logic_Input)Logic input terminal voltage range–0.37V
V(Logic_Output)Logic output terminal voltage range–0.37V
VINHINH output pin voltage rangeDevices without the "H" suffix–0.358 and VO ≤ VSUP + 0.3V
INH output pin voltage rangeH versions–0.370 and VO ≤ VSUP + 0.3V
V(WAKE)WAKE input pin voltage rangeDevices without the "H" suffix–0.358 and VI ≤ VSUP + 0.3V
WAKE input pin voltage rangeH versions–0.370 and VI ≤ VSUP + 0.3V
IO(LOGIC)Logic output currentRXD, and nFAULT8mA
IO(INH)INH output current4mA
IO(WAKE)Wake current if due to ground shifts V(WAKE) ≤ V(GND) – 0.3 V, thus the current into WAKE must be limited via an external serial resistor3mA
TJOperating virtual junction temperature range–55150°C
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
(2) All voltage values, except differential I/O bus voltages, are with respect to ground terminal.

6.2 ESD Ratings

VALUEUNIT
V(ESD)Electrostatic dischargeHuman body model (HBM), per AEC Q100-002VSUP, INH(1)±4000V
All pins, except VSUP, INH(1)±6000V
CAN bus terminals (CANH, CANL)(2)±16000V
Charged device model (CDM) - SOICAll terminals(3)±1500V
Charged device model (CDM) - DMTAll terminals(3)±500V
Corner terminals(3)±750V
Machine model (MM)All terminals(4)±200V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
(2) Test method based upon AEC-Q100-002, CAN bus terminals stressed with respect to each other and to GND.
(3) Tested in accordance to AEC-Q100-011.
(4) Tested in accordance to JEDEC Standard 22, Test Method A115A.

6.3 ESD Ratings IEC Specification

VALUEUNIT
V(ESD)System level electrostatic discharge (ESD)CAN bus terminals (CANH, CANL) to GNDISO 10605 per SAE J2962-2: Powered Air Discharge(2)±15000V
ISO 10605 per SAE J2962-2: Powered Contact Discharge(2)±8000V
IEC 61000-4-2 (150 pF, 330 Ω): Unpowered contact discharge±15000V
VSUP and WAKEIEC 61000-4-2 (150 pF, 330 Ω) Unpowered contact discharge±6000V
ISO 7637-2
Transients according to GIFT - ICT CAN EMC test specification(1)
CAN bus terminals (CANH, CANL) to GND, VSUP, WAKEPulse 1–100V
Pulse 2+75V
Pulse 3a–150V
Pulse 3b+100V
ISO 7637-3 TransientsCAN bus terminals (CANH, CANL) to GND, VSUP, WAKEDirect coupling capacitor "slow transient pulse" with 100-nF coupling capacitor - powered±85V
(1) ISO 7637 is a system level transient test. Results given here are specific to the IBEE CAN EMC Test specification conditions. Different system level configurations leads to different results.
(2) Verified by external test facility on SOIC package

6.4 Recommended Operating Conditions

MINNOMMAXUNIT
VSUPBattery supply (reverse-blocked) voltage range - standard version4.545V
Battery supply (reverse-blocked) voltage range - H version4.560V
VCC5 V Supply Voltage4.55.5V
VIOI/O supply voltage2.85.5V
IOH(LOGIC)Logic terminal high level output current – RXD and nFAULT–2mA
IOL(LOGIC)Logic terminal low level output current – RXD and nFAULT2mA
IO(INH)INH output current1mA
TAOperational free-air temperature–55125°C

6.5 Thermal Information

THERMAL METRIC(1)TCAN1043x-Q1UNIT
D (SOIC)DMT (VSON)
14 PINS14 PINS
RθJAJunction-to-ambient thermal resistance7833.1°C/W
RθJC(top)Junction-to-case (top) thermal resistance33.630.5°C/W
RθJBJunction-to-board thermal resistance34.710.8°C/W
ΨJTJunction-to-top characterization parameter5.70.4°C/W
ΨJBJunction-to-board characterization parameter34.310.7°C/W
RθJC(bot)Junction-to-case (bottom) thermal resistancen/a1.3°C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.6 Dissipation Ratings

PARAMETERTEST CONDITIONSPOWER DISSIPATIONUNIT
PDAverage power dissipationVSUP = 14 V, VCC = 5 V, VIO = 5 V, TJ = 27°C, RL = 60 Ω, nSTB = 5 V, EN = 5 V, CL_RXD = 15 pF. Typical CAN operating conditions at 500 kbps with 25% transmission (dominant) rate.58mW
VSUP = 14 V, VCC = 5.5 V, VIO = 5.5 V, TJ = 150°C, RL = 50 Ω, nSTB = 5.5 V, EN = 5.5 V, CL_RXD = 15 pF. Typical high load CAN operating conditions at 1Mbps with 50% transmission (dominant) rate and loaded network.126mW
TTSDThermal shutdown temperature170°C
TTSD_HYSThermal shutdown hysteresis10°C

6.7 Electrical Characteristics

Over recommended operating conditions with TA = –55°C to 125°C (unless otherwise noted).
PARAMETERTEST CONDITIONSMINTYP(1)MAXUNIT
SUPPLY CHARACTERISTICS
ISUPSupply current
VSUP
Normal, Silent, Go-to-Sleep4070µA
Standby modeStandby mode, VCC > 4.5 V, VIO > 2.8 V,
VINH = V(WAKE) = VSUP
1545µA
Sleep modeSleep mode, VCC = VIO = VINH = 0 V
V(WAKE) = VSUP
1530µA
ICCSupply current
Normal mode
VCC
DominantSee Figure 7-2. TXD = 0 V, RL = 60 Ω, CL = open. Typical bus load.70mA
See Figure 7-2. TXD = 0 V, RL = 50 Ω, CL = open. High bus load.80mA
Dominant with bus faultSee Figure 7-2. TXD = 0 V, CANH = -25 V, RL = open, CL = open
110mA
RecessiveSee Figure 7-2. TXD = VIO, RL = 50 Ω, CL = open, RCM = open5mA
Supply current Silent and Go-to-Sleep modeSee Figure 7-2. TXD = VIO, RL = 50 Ω, CL = open2.5mA
Supply current Standby modeSee Figure 7-2. EN = L, NSTB = L5µA
Sleep modeSee Figure 7-2. EN = H or L, NSTB = L5
IIOI/O supply currentNormal modeRXD floating, TXD = 0 V (dominant) nSTB = VIO, EN = VIO450µA
Normal, Silent or Go-to-Sleep modeRXD floating, TXD = VIO recessive5µA
µA
Sleep modeNSTB = L5µA
UVSUPUndervoltage detection on VSUP for protected mode3.04.2V
VHYS(UVSUP)Hysteresis voltage on UVSUP50mV
UVVCCRising undervoltage detection on VCC for protected mode4.14.4V
Falling undervoltage detection on VCC for protected mode3.53.9V
VHYS(UVVCC)Hysteresis voltage on UVVCC200mV
UVVIOUndervoltage detection on VIO for protected mode1.32.75V
VHYS(UVIO) Hysteresis voltage on UVIO80mV
Driver Electrical Characteristics
VO(D)Bus output voltage
dominant - normal mode
CANHSee Figure 7-2 and Figure 8-3, TXD = 0 V, Normal mode, 50 ≤ RL ≤ 65 Ω, CL = open, RCM = open2.754.5V
CANL0.52.25V
VO(R)Bus output voltage
recessive
CANH and CANLSee Figure 7-2 and Figure 8-3, TXD = VCC, VIO = VCC, Normal or Silent(2), RL = open, RCM = open20.5 × VCC3V
VOD(D)Differential output voltage dominantCANH - CANLSee Figure 7-2 and Figure 8-3, TXD = 0 V, Normal mode, 50 Ω ≤ RL ≤ 65 Ω, CL = open, RCM = open1.53V
See Figure 7-2 and Figure 8-3, TXD = 0 V, Normal mode, 45 Ω ≤ RL ≤ 50 Ω, CL = open, RCM = open1.43V
See Figure 7-2 and Figure 8-3, TXD = 0 V, Normal mode, RL = 2240 Ω, CL = open, RCM = open1.55V
See Figure 7-2 and Figure 8-3, TXD = 0 V, Normal mode, 45 Ω ≤ RL ≤ 70 Ω, CL = open, RCM = open1.43.3V
VOD(R)Differential output voltage recessiveCANH - CANLSee Figure 7-2 and Figure 8-3, TXD = VCC, Normal or Silent mode(2), RL = 60 Ω, CL = open, RCM = open–12012mV
See Figure 7-2 and Figure 8-3, TXD = VCC, Normal or Silent mode(2), RL = open, CL = open, RCM = open–5050mV
VSYMDriver symmetry, dominant or recessive
VSYM = (VO(CANH) + VO(CANL))/VCC
See Figure 7-2 and Figure 9-4, Normal mode, CL = open, RCM = open, TXD = 1MHz(3)0.91.1V / V
VSYM_DCDriver symmetry, dominant
VSYM(DC) = VCC - VO(CANH) - VO(CANL)
See Figure 7-2 and Figure 8-3, Normal or Silent mode, RL = 60 Ω, CL = open, RCM = open–400400mV
IOS(DOM)Short circuit steady-state output current
dominant
See Figure 7-10 and Figure 8-3, VCANH = -5 V, CANL = open, TXD = 0 V–100mA
See Figure 7-10 and Figure 8-3, VCANL = 40 V, CANH = open, TXD = 0 V100mA
IOS(REC)Short circuit steady-state output current
recessive
See Figure 7-10 and Figure 8-3
–27 V ≤ VBUS ≤ 32 V, VBUS = CANH = CANL, TXD = VIO
–55mA
VO(STB)Bus output voltage
Standby mode
CANHSTB = VCC or VIO, RL = open,
RCM = open
–0.100.1V
CANL–0.100.1V
CANH - CANL–0.200.2V
Receiver Electrical Characteristics
VCMCommon mode range
Normal and Silent modes
See Figure 7-3 and Table 8-5-3030V
VITInput threshold voltage
Normal and Silent modes
See Figure 7-3 and Table 8-5, VCM ≤ ±20 V500900mV
See Figure 7-3 and Table 8-5, VCM ≤ ±30 V4001000mV
VRECReceiver recessive voltageSee Figure 7-3 and Table 8-5
Normal or Silent mode, VCM = ±20 V
-30.5V
VDOMReceiver dominant voltage0.98V
VHYSHysteresis voltage for input threshold
Normal and Silent modes
See Figure 7-3 and Table 8-5120mV
VIT(Sleep)Input threshold
Sleep mode
See Figure 7-3 and Table 8-5; VCM = ± 12 V4001150mV
VREC(Sleep)Receiver recessive voltage
Sleep mode
-30.4V
VDOM(Sleep)Receiver dominant voltage
Sleep mode
1.158V
VCMCommon mode range
Standby, Go-to-Sleep and Sleep modes
See Figure 7-3 and Table 8-5-1212V
IIOFF(LKG)Power-off (unpowered) bus input leakage currentCANH = CANL = 5 V, VCC = GND, VIO = GND, VSUP = 0 V4.8µA
CIInput capacitance to ground (CANH or CANL)TXD = VCC, VIO = VCC(4)2430pF
CIDDifferential input capacitance (CANH or CANL)1215pF
RIDDifferential input resistanceTXD = VCC = VIO = 5 V, Normal mode; -30 ≤ VCM ≤ +30V3080kΩ
RINInput resistance (CANH or CANL)1540kΩ
RIN(M)Input resistance matching:
[1 – RIN(CANH) / RIN(CANL)] × 100%
V(CANH) = V(CANL) = 5 V–2%2%
RCBF Valid differential load impedance range for bus fault circuitryRCM = RL, CL = open4570Ω
TXD TERMINAL (CAN TRANSMIT DATA INPUT)
VIHHigh level input voltage0.7 VIOV
VILLow level input voltage0.3 VIOV
IIHHigh level input leakage currentTXD = VCC = VIO = 5.5 V–2.501µA
IILLow level input leakage currentTXD = 0 V, VCC = VIO = 5.5 V–100–2.5µA
ILKG(OFF)Unpowered leakage currentTXD = 5.5 V, VCC = VIO = 0 V–101µA
CIInput capacitanceVIN = 0.4 x sin(2 x π x 2 x 106 x t) + 2.5 V
5pF
RXD TERMINAL (CAN RECEIVE DATA OUTPUT)
VOHHigh level output voltageSee Figure 7-3, IO = –2 mA.0.8 VIOV
VOLLow level output voltageSee Figure 7-3, IO = –2 mA.0.2 VIOV
nFAULT TERMINAL (FAULT AND STATUS OUTPUT)
VOHHigh level output voltageSee Figure 7-1, IO = –2 mA.0.8 VIOV
VOLLow level output voltageSee Figure 7-1 IO = 2 mA.0.2 VIOV
nSTB TERMINAL (STANDBY MODE INPUT)
VIHHigh level input voltage0.7 VIOV
VILLow level input voltage0.3 VIOV
IIHHigh level input leakage currentnSTB = VCC = VIO = 5.5 V0.510µA
IILLow level input leakage currentnSTB = 0 V, VCC = VIO = 5.5 V–11µA
ILKG(OFF)Unpowered leakage currentnSTB = 5.5 V, VCC = 0 V, VIO = 0 V–101µA
EN TERMINAL (ENABLE MODE INPUT)
VIHHigh level input voltage0.7 VIOV
VILLow level input voltage0.3 VIOV
IIHHigh level input leakage currentEN = VCC = VIO = 5.5 V0.510µA
IILLow level input leakage currentEN = 0 V, VCC = VIO = 5.5 V–11µA
ILKG(OFF)Unpowered leakage currentEN = 5.5 V, VCC = 0 V, VIO = 0 V–101µA
INH TERMINAL (INHIBIT OUTPUT)
ΔVHHigh level voltage drop INH with respect to VSUPIINH = –0.5 mA0.51V
ILKG(INH)Leakage currentINH = 0 V, Sleep Mode-55µA
Wake TERMINAL (WAKE INPUT)
VIHHigh level input voltageStandby and Sleep ModeVSUP - 1.9V
VILLow level input voltageStandby and Sleep ModeVSUP - 3.5V
IIHHigh level input current(5)WAKE = VSUP – 1 V–25–15µA
IILLow level input current(5)WAKE = 1 V1525µA
(1) All typical values are at 25°C and supply voltages of VCC = 5 V, VIO = 3.3 V, and RL = 60 Ω. Unless otherwise noted.
(2) The recessive bus voltage is the same if the device is in Normal mode with the nSTB and EN terminals high or if the device is in Silent mode with the nSTB terminal high and EN terminal low.
(3) The bus output voltage symmetry, VSYM, is measured using RTERM / 2 = 30 Ω and CSPLIT = 4.7 nF as shown in Figure 9-4
(4) Specified by design and verified during product validation using the ISO 11898-2 method.
(5) To minimize system level current consumption, the WAKE automatically configures itself based on the applied voltage to have
either an internal pull-up or pull-down current source. A high level input results in an internal pull-up and a low level input results in an
internal pull-down. For more information, refer to Section 8.4.6.2.

6.8 Switching Characteristics

Over recommended operating conditions with TA = -55°C to 125°C (unless otherwise noted)
PARAMETERTEST CONDITIONSMINTYP(1)MAXUNIT
DRIVER SWITCHING CHARACTERISTICS
tpHRPropagation delay time, high TXD to driver recessiveSee Figure 7-2, Normal mode. RL = 60 Ω, CL = 100 pF, RCM = open50ns
tpLDPropagation delay time, low TXD to driver dominant40ns
tsk(p)Pulse skew (|tpHR - tpLD|)10ns
tRDifferential output signal rise time45ns
tFDifferential output signal fall time45ns
tTXD_DTODominant time outSee Figure 7-9, RL = 60 Ω, CL = open1.23.8ms
RECEIVER SWITCHING CHARACTERISTICS
tpRHPropagation delay time, bus recessive input to high RXDSee Figure 7-3
CL(RXD) = 15 pF
50ns
tpDLPropagation delay time, bus dominant input to RXD low output50ns
tROutput signal rise time (RXD)8ns
tFOutput signal fall time (RXD)8ns
tBUS_DOMDominant time outSee Figure 17, RL = 60 Ω, CL = open1.33.8ms
tCBFBus fault detection time45 Ω ≤ RCM ≤ 70 Ω, CL = open1.9µs
Wake Terminal (Wake input)
tWAKE_HTWAKE hold timeSee Figure 7-12 and Figure 7-13
Time required for LWU from a high to low or low to high on WAKE
550µs
Device Switching Characteristics
tPROP(LOOP1)Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominantSee Figure 7-5, Normal mode, RL = 60 Ω, CL = 100 pF, CL(RXD) = 15 pF100160ns
tPROP(LOOP2)Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive110175ns
tMODE1Mode change timeSee Figure 7-4 and Figure 7-5, Mode change time for leaving Sleep mode to entering normal and silent mode after VCC and VIO have crossed UV thresholds20µs
tMODE2Mode change timeMode changes between Normal, Silent and Standby modes, and Sleep to Standby mode transition10µs
tUV_RE-ENABLERe-enable time after under voltage eventTime for device to return to normal operation from UVVCC or UVVIO under voltage event200µs
tPower_UpPower up time on VSUPSee Figure 7-11250µs
tWK_FILTERBus time to meet filtered bus requirements for wake up requestSee Figure 8-50.51.8µs
tWK_TIMEOUTBus Wake-up timeout valueSee Figure 8-50.52ms
tUVUndervoltage filter time for VIO and VCCVIO ≤ UVVIO or VCC < UVVCC159340ms
tGo_To_SleepMinimum hold time for transition to sleep modeEN = H and nSTB = L550µs
FD Timing Parameters
tBIT(BUS)Bit time on CAN bus output pins with tBIT(TXD) = 500 ns, all devicesNormal mode, RL = 60 Ω, CL = 100 pF,
CL(RXD) = 15 pF,
ΔtREC = tBIT(RXD) - tBIT(BUS)
435530ns
Bit time on CAN bus output pins with tBIT(TXD) = 200 ns, G device variants only155210ns
tBIT(RXD)Bit time on RXD output pins with tBIT(TXD) = 500 ns, all devices400550ns
Bit time on RXD output pins with tBIT(TXD) = 200 ns, G device variants only120220ns
ΔtRECReceiver timing symmetry with tBIT(TXD) = 500 ns, all devices-6540ns
Receiver timing symmetry with tBIT(TXD) = 200 ns, G device variants only-4515ns

6.9 Typical Characteristics

TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 VOD(D) Over Temperature
VCC = 5VVIO = 3.3VRL = 60Ω
CL = OpenRCM = OpenSTB = 0V
Figure 6-1 VOD(D) Over Temperature
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 ICC Recessive Over Temperature
VCC = 5VVIO = 3.3VRL = 60Ω
CL = OpenRCM = OpenSTB = 0V
Figure 6-3 ICC Recessive Over Temperature
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 VOD(D) Over VCC
VIO = 5VSTB = 0VRL = 60Ω
CL = OpenRCM = OpenTemp = 25°C
Figure 6-2 VOD(D) Over VCC
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 Total Loop Delay Over Temperature
VCC = 5VVIO = 3.3VRL = 60Ω
CL = 100pFCL_RXD = 15pFSTB = 0V
Figure 6-4 Total Loop Delay Over Temperature

7 Parameter Measurement Information

TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 Supply
                    Test Circuit Figure 7-1 Supply Test Circuit
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 Driver
                    Test Circuit and Measurement Figure 7-2 Driver Test Circuit and Measurement
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 Receiver
                    Test Circuit and Measurement Figure 7-3 Receiver Test Circuit and Measurement
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 tMODE1 Test Circuit and Measurement, Silent Mode to Normal
                    Mode Figure 7-4 tMODE1 Test Circuit and Measurement, Silent Mode to Normal Mode
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 tMODE2 Test Circuit and Measurement, Normal Mode to Silent
                    Mode Figure 7-5 tMODE2 Test Circuit and Measurement, Normal Mode to Silent Mode
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 tPROP(LOOP) Test Circuit and Measurement Figure 7-6 tPROP(LOOP) Test Circuit and Measurement
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 tPROP(LOOP) Test Circuit and Measurement with CM Range Figure 7-7 tPROP(LOOP) Test Circuit and Measurement with CM Range
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 Loop
                    Delay Symmetry Test Circuit and Measurement Figure 7-8 Loop Delay Symmetry Test Circuit and Measurement
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 TXD
                    Dominant Timeout Test Circuit and Measurement Figure 7-9 TXD Dominant Timeout Test Circuit and Measurement
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 Driver
                    Short-Circuit Current Test and Measurement Figure 7-10 Driver Short-Circuit Current Test and Measurement
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 tPower_Up Timing Measurement Figure 7-11 tPower_Up Timing Measurement
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 tWAKE_HT While Monitoring INH Output Figure 7-12 tWAKE_HT While Monitoring INH Output
TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1 tWAKE_HT While Monitoring RXD Output Figure 7-13 tWAKE_HT While Monitoring RXD Output

8 Detailed Description

8.1 Overview

The TCAN1043xx-Q1 meets or exceeds the specifications of the ISO 11898-2 (2016) High Speed CAN (Controller Area Network) physical layer standard. The device has been certified to the requirements of ISO11898-2/5 according to the GIFT/ICT High Speed CAN test specification.

This device provides CAN transceiver differential transmit capability to the bus and differential receive capability from the bus. The device includes many protection features providing device and CAN bus robustness. All of the devices are available to support CAN and CAN FD (Flexible Data Rate) up to 2Mbps while the G version of the device support CAN and CAN FD data rates up to 5Mbps.

8.2 Functional Block Diagram

TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1

8.3 Feature Description

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale