ZHCSH19G November 2017 – December 2024 TCAN1043-Q1 , TCAN1043G-Q1 , TCAN1043H-Q1 , TCAN1043HG-Q1
PRODUCTION DATA
本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。
TCAN1043xx-Q1 满足 ISO 11898–2 (2016) 高速控制器局域网 (CAN) 规范的物理层要求,提供 CAN 总线和 CAN 协议控制器之间的接口。这些器件支持传统 CAN 和 CAN FD 协议,具有最高 2Mbps 的数据速率。器件型号以“G”结尾的器件专为数据速率高达 5Mbps 的 CAN FD 应用而设计。TCAN1043xx-Q1 可以(通过 INH 输出引脚)选择性地启用节点上可能存在的各种电源,从而在整个系统级别减少电池电流消耗。这使得在超低电流睡眠状态中,功率传送到除 TCAN1043xx-Q1 以外的所有系统组件,而 TCAN1043xx-Q1 则仍然处于低功耗状态,并对 CAN 总线进行监控。
在总线上检测到唤醒模式或通过 WAKE 输入请求本地唤醒时,TCAN1043xx-Q1 会通过驱动 INH 高电平的方式发起节点启动。TCAN1043xx-Q1 包括通过 VIO 端子实现的内部逻辑电平转换功能,允许直接连接到 3.3V 或 5V 控制器。该器件包含很多保护和诊断功能,包括 CAN 总线短路检测和电池连接检测。TCAN1043xx-Q1 满足 IEC 62228-3 和 J2962-2 的 ESD 和 EMC 要求,无需额外增加保护组件。
DEVICE NUMBER | BUS FAULT PROTECTION | MAXIMUM DATA RATE |
---|---|---|
TCAN1043-Q1 | ±58V | 2Mbps |
TCAN1043H-Q1 | ±70V | 2Mbps |
TCAN1043G-Q1 | ±58V | 5Mbps |
TCAN1043HG-Q1 | ±70V | 5Mbps |
PINS | TYPE | DESCRIPTION | |
---|---|---|---|
NAME | NO | ||
TXD | 1 | Digital Input | CAN transmit data input (low for dominant and high for recessive bus states) |
GND | 2 | GND | Ground connection |
VCC | 3 | Supply | 5V CAN bus supply voltage |
RXD | 4 | Digital Output | CAN receive data output (low for dominant and high for recessive bus states), tri-state |
VIO | 5 | Supply | I/O supply voltage |
EN | 6 | Digital Input | Enable input for mode control, integrated pull down |
INH | 7 | High Voltage Output | Can be used to control system voltage regulators |
nFAULT | 8 | Digital Output | Fault output, inverted logic |
WAKE | 9 | High Voltage Input | Wake input terminal, high voltage input |
VSUP | 10 | Supply | Reverse-blocked battery supply input |
NC | 11 | — | No connect (not internally connected) |
CANL | 12 | Bus I/O | Low-level CAN bus input/output line |
CANH | 13 | Bus I/O | High-level CAN bus input/output line |
nSTB | 14 | Digital Input | Standby input for mode control, integrated pull down |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VSUP | Battery supply (reverse-blocked) voltage range – standard versions | –0.3 | 58 | V | |
Battery supply (reverse blocked) voltage range – H versions | –0.3 | 70 | V | ||
VCC | 5-V bus supply voltage | –0.3 | 7 | V | |
VIO | I/O level shifting voltage | –0.3 | 7 | V | |
VBUS | CAN bus I/O voltage range (CANH, CANL) | Devices without the "H" suffix | –58 | 58 | V |
CAN bus I/O voltage range (CANH, CANL) | Devices with the "H" suffix | –70 | 70 | V | |
V(DIFF) | Max differential voltage between CANH and CANL | Devices without the "H" suffix | –58 | 58 | V |
Devices with the "H" suffix | –70 | 70 | V | ||
V(Logic_Input) | Logic input terminal voltage range | –0.3 | 7 | V | |
V(Logic_Output) | Logic output terminal voltage range | –0.3 | 7 | V | |
VINH | INH output pin voltage range | Devices without the "H" suffix | –0.3 | 58 and VO ≤ VSUP + 0.3 | V |
INH output pin voltage range | H versions | –0.3 | 70 and VO ≤ VSUP + 0.3 | V | |
V(WAKE) | WAKE input pin voltage range | Devices without the "H" suffix | –0.3 | 58 and VI ≤ VSUP + 0.3 | V |
WAKE input pin voltage range | H versions | –0.3 | 70 and VI ≤ VSUP + 0.3 | V | |
IO(LOGIC) | Logic output current | RXD, and nFAULT | 8 | mA | |
IO(INH) | INH output current | 4 | mA | ||
IO(WAKE) | Wake current if due to ground shifts V(WAKE) ≤ V(GND) – 0.3 V, thus the current into WAKE must be limited via an external serial resistor | 3 | mA | ||
TJ | Operating virtual junction temperature range | –55 | 150 | °C |
VALUE | UNIT | ||||
---|---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per AEC Q100-002 | VSUP, INH(1) | ±4000 | V |
All pins, except VSUP, INH(1) | ±6000 | V | |||
CAN bus terminals (CANH, CANL)(2) | ±16000 | V | |||
Charged device model (CDM) - SOIC | All terminals(3) | ±1500 | V | ||
Charged device model (CDM) - DMT | All terminals(3) | ±500 | V | ||
Corner terminals(3) | ±750 | V | |||
Machine model (MM) | All terminals(4) | ±200 | V |
VALUE | UNIT | ||||
---|---|---|---|---|---|
V(ESD) | System level electrostatic discharge (ESD) | CAN bus terminals (CANH, CANL) to GND | ISO 10605 per SAE J2962-2: Powered Air Discharge(2) | ±15000 | V |
ISO 10605 per SAE J2962-2: Powered Contact Discharge(2) | ±8000 | V | |||
IEC 61000-4-2 (150 pF, 330 Ω): Unpowered contact discharge | ±15000 | V | |||
VSUP and WAKE | IEC 61000-4-2 (150 pF, 330 Ω) Unpowered contact discharge | ±6000 | V | ||
ISO 7637-2 Transients according to GIFT - ICT CAN EMC test specification(1) | CAN bus terminals (CANH, CANL) to GND, VSUP, WAKE | Pulse 1 | –100 | V | |
Pulse 2 | +75 | V | |||
Pulse 3a | –150 | V | |||
Pulse 3b | +100 | V | |||
ISO 7637-3 Transients | CAN bus terminals (CANH, CANL) to GND, VSUP, WAKE | Direct coupling capacitor "slow transient pulse" with 100-nF coupling capacitor - powered | ±85 | V |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
VSUP | Battery supply (reverse-blocked) voltage range - standard version | 4.5 | 45 | V | ||
Battery supply (reverse-blocked) voltage range - H version | 4.5 | 60 | V | |||
VCC | 5 V Supply Voltage | 4.5 | 5.5 | V | ||
VIO | I/O supply voltage | 2.8 | 5.5 | V | ||
IOH(LOGIC) | Logic terminal high level output current – RXD and nFAULT | –2 | mA | |||
IOL(LOGIC) | Logic terminal low level output current – RXD and nFAULT | 2 | mA | |||
IO(INH) | INH output current | 1 | mA | |||
TA | Operational free-air temperature | –55 | 125 | °C |
THERMAL METRIC(1) | TCAN1043x-Q1 | UNIT | ||
---|---|---|---|---|
D (SOIC) | DMT (VSON) | |||
14 PINS | 14 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 78 | 33.1 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 33.6 | 30.5 | °C/W |
RθJB | Junction-to-board thermal resistance | 34.7 | 10.8 | °C/W |
ΨJT | Junction-to-top characterization parameter | 5.7 | 0.4 | °C/W |
ΨJB | Junction-to-board characterization parameter | 34.3 | 10.7 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | n/a | 1.3 | °C/W |
PARAMETER | TEST CONDITIONS | POWER DISSIPATION | UNIT | |
---|---|---|---|---|
PD | Average power dissipation | VSUP = 14 V, VCC = 5 V, VIO = 5 V, TJ = 27°C, RL = 60 Ω, nSTB = 5 V, EN = 5 V, CL_RXD = 15 pF. Typical CAN operating conditions at 500 kbps with 25% transmission (dominant) rate. | 58 | mW |
VSUP = 14 V, VCC = 5.5 V, VIO = 5.5 V, TJ = 150°C, RL = 50 Ω, nSTB = 5.5 V, EN = 5.5 V, CL_RXD = 15 pF. Typical high load CAN operating conditions at 1Mbps with 50% transmission (dominant) rate and loaded network. | 126 | mW | ||
TTSD | Thermal shutdown temperature | 170 | °C | |
TTSD_HYS | Thermal shutdown hysteresis | 10 | °C |
PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
SUPPLY CHARACTERISTICS | |||||||
ISUP | Supply current VSUP | Normal, Silent, Go-to-Sleep | 40 | 70 | µA | ||
Standby mode | Standby mode, VCC > 4.5 V, VIO > 2.8 V, VINH = V(WAKE) = VSUP | 15 | 45 | µA | |||
Sleep mode | Sleep mode, VCC = VIO = VINH = 0 V V(WAKE) = VSUP | 15 | 30 | µA | |||
ICC | Supply current Normal mode VCC | Dominant | See Figure 7-2. TXD = 0 V, RL = 60 Ω, CL = open. Typical bus load. | 70 | mA | ||
See Figure 7-2. TXD = 0 V, RL = 50 Ω, CL = open. High bus load. | 80 | mA | |||||
Dominant with bus fault | See Figure 7-2. TXD = 0 V, CANH = -25 V, RL = open, CL = open | 110 | mA | ||||
Recessive | See Figure 7-2. TXD = VIO, RL = 50 Ω, CL = open, RCM = open | 5 | mA | ||||
Supply current Silent and Go-to-Sleep mode | See Figure 7-2. TXD = VIO, RL = 50 Ω, CL = open | 2.5 | mA | ||||
Supply current Standby mode | See Figure 7-2. EN = L, NSTB = L | 5 | µA | ||||
Sleep mode | See Figure 7-2. EN = H or L, NSTB = L | 5 | |||||
IIO | I/O supply current | Normal mode | RXD floating, TXD = 0 V (dominant) nSTB = VIO, EN = VIO | 450 | µA | ||
Normal, Silent or Go-to-Sleep mode | RXD floating, TXD = VIO recessive | 5 | µA | ||||
µA | |||||||
Sleep mode | NSTB = L | 5 | µA | ||||
UVSUP | Undervoltage detection on VSUP for protected mode | 3.0 | 4.2 | V | |||
VHYS(UVSUP) | Hysteresis voltage on UVSUP | 50 | mV | ||||
UVVCC | Rising undervoltage detection on VCC for protected mode | 4.1 | 4.4 | V | |||
Falling undervoltage detection on VCC for protected mode | 3.5 | 3.9 | V | ||||
VHYS(UVVCC) | Hysteresis voltage on UVVCC | 200 | mV | ||||
UVVIO | Undervoltage detection on VIO for protected mode | 1.3 | 2.75 | V | |||
VHYS(UVIO) | Hysteresis voltage on UVIO | 80 | mV | ||||
Driver Electrical Characteristics | |||||||
VO(D) | Bus output voltage dominant - normal mode | CANH | See Figure 7-2 and Figure 8-3, TXD = 0 V, Normal mode, 50 ≤ RL ≤ 65 Ω, CL = open, RCM = open | 2.75 | 4.5 | V | |
CANL | 0.5 | 2.25 | V | ||||
VO(R) | Bus output voltage recessive | CANH and CANL | See Figure 7-2 and Figure 8-3, TXD = VCC, VIO = VCC, Normal or Silent(2), RL = open, RCM = open | 2 | 0.5 × VCC | 3 | V |
VOD(D) | Differential output voltage dominant | CANH - CANL | See Figure 7-2 and Figure 8-3, TXD = 0 V, Normal mode, 50 Ω ≤ RL ≤ 65 Ω, CL = open, RCM = open | 1.5 | 3 | V | |
See Figure 7-2 and Figure 8-3, TXD = 0 V, Normal mode, 45 Ω ≤ RL ≤ 50 Ω, CL = open, RCM = open | 1.4 | 3 | V | ||||
See Figure 7-2 and Figure 8-3, TXD = 0 V, Normal mode, RL = 2240 Ω, CL = open, RCM = open | 1.5 | 5 | V | ||||
See Figure 7-2 and Figure 8-3, TXD = 0 V, Normal mode, 45 Ω ≤ RL ≤ 70 Ω, CL = open, RCM = open | 1.4 | 3.3 | V | ||||
VOD(R) | Differential output voltage recessive | CANH - CANL | See Figure 7-2 and Figure 8-3, TXD = VCC, Normal or Silent mode(2), RL = 60 Ω, CL = open, RCM = open | –120 | 12 | mV | |
See Figure 7-2 and Figure 8-3, TXD = VCC, Normal or Silent mode(2), RL = open, CL = open, RCM = open | –50 | 50 | mV | ||||
VSYM | Driver symmetry, dominant or recessive VSYM = (VO(CANH) + VO(CANL))/VCC | See Figure 7-2 and Figure 9-4, Normal mode, CL = open, RCM = open, TXD = 1MHz(3) | 0.9 | 1.1 | V / V | ||
VSYM_DC | Driver symmetry, dominant VSYM(DC) = VCC - VO(CANH) - VO(CANL) | See Figure 7-2 and Figure 8-3, Normal or Silent mode, RL = 60 Ω, CL = open, RCM = open | –400 | 400 | mV | ||
IOS(DOM) | Short circuit steady-state output current dominant | See Figure 7-10 and Figure 8-3, VCANH = -5 V, CANL = open, TXD = 0 V | –100 | mA | |||
See Figure 7-10 and Figure 8-3, VCANL = 40 V, CANH = open, TXD = 0 V | 100 | mA | |||||
IOS(REC) | Short circuit steady-state output current recessive | See Figure 7-10 and Figure 8-3 –27 V ≤ VBUS ≤ 32 V, VBUS = CANH = CANL, TXD = VIO | –5 | 5 | mA | ||
VO(STB) | Bus output voltage Standby mode | CANH | STB = VCC or VIO, RL = open, RCM = open | –0.1 | 0 | 0.1 | V |
CANL | –0.1 | 0 | 0.1 | V | |||
CANH - CANL | –0.2 | 0 | 0.2 | V | |||
Receiver Electrical Characteristics | |||||||
VCM | Common mode range Normal and Silent modes | See Figure 7-3 and Table 8-5 | -30 | 30 | V | ||
VIT | Input threshold voltage Normal and Silent modes | See Figure 7-3 and Table 8-5, VCM ≤ ±20 V | 500 | 900 | mV | ||
See Figure 7-3 and Table 8-5, VCM ≤ ±30 V | 400 | 1000 | mV | ||||
VREC | Receiver recessive voltage | See Figure 7-3 and Table 8-5 Normal or Silent mode, VCM = ±20 V | -3 | 0.5 | V | ||
VDOM | Receiver dominant voltage | 0.9 | 8 | V | |||
VHYS | Hysteresis voltage for input threshold Normal and Silent modes | See Figure 7-3 and Table 8-5 | 120 | mV | |||
VIT(Sleep) | Input threshold Sleep mode | See Figure 7-3 and Table 8-5; VCM = ± 12 V | 400 | 1150 | mV | ||
VREC(Sleep) | Receiver recessive voltage Sleep mode | -3 | 0.4 | V | |||
VDOM(Sleep) | Receiver dominant voltage Sleep mode | 1.15 | 8 | V | |||
VCM | Common mode range Standby, Go-to-Sleep and Sleep modes | See Figure 7-3 and Table 8-5 | -12 | 12 | V | ||
IIOFF(LKG) | Power-off (unpowered) bus input leakage current | CANH = CANL = 5 V, VCC = GND, VIO = GND, VSUP = 0 V | 4.8 | µA | |||
CI | Input capacitance to ground (CANH or CANL) | TXD = VCC, VIO = VCC(4) | 24 | 30 | pF | ||
CID | Differential input capacitance (CANH or CANL) | 12 | 15 | pF | |||
RID | Differential input resistance | TXD = VCC = VIO = 5 V, Normal mode; -30 ≤ VCM ≤ +30V | 30 | 80 | kΩ | ||
RIN | Input resistance (CANH or CANL) | 15 | 40 | kΩ | |||
RIN(M) | Input resistance matching: [1 – RIN(CANH) / RIN(CANL)] × 100% | V(CANH) = V(CANL) = 5 V | –2% | 2% | |||
RCBF | Valid differential load impedance range for bus fault circuitry | RCM = RL, CL = open | 45 | 70 | Ω | ||
TXD TERMINAL (CAN TRANSMIT DATA INPUT) | |||||||
VIH | High level input voltage | 0.7 VIO | V | ||||
VIL | Low level input voltage | 0.3 VIO | V | ||||
IIH | High level input leakage current | TXD = VCC = VIO = 5.5 V | –2.5 | 0 | 1 | µA | |
IIL | Low level input leakage current | TXD = 0 V, VCC = VIO = 5.5 V | –100 | –2.5 | µA | ||
ILKG(OFF) | Unpowered leakage current | TXD = 5.5 V, VCC = VIO = 0 V | –1 | 0 | 1 | µA | |
CI | Input capacitance | VIN = 0.4 x sin(2 x π x 2 x 106 x t) + 2.5 V | 5 | pF | |||
RXD TERMINAL (CAN RECEIVE DATA OUTPUT) | |||||||
VOH | High level output voltage | See Figure 7-3, IO = –2 mA. | 0.8 VIO | V | |||
VOL | Low level output voltage | See Figure 7-3, IO = –2 mA. | 0.2 VIO | V | |||
nFAULT TERMINAL (FAULT AND STATUS OUTPUT) | |||||||
VOH | High level output voltage | See Figure 7-1, IO = –2 mA. | 0.8 VIO | V | |||
VOL | Low level output voltage | See Figure 7-1 IO = 2 mA. | 0.2 VIO | V | |||
nSTB TERMINAL (STANDBY MODE INPUT) | |||||||
VIH | High level input voltage | 0.7 VIO | V | ||||
VIL | Low level input voltage | 0.3 VIO | V | ||||
IIH | High level input leakage current | nSTB = VCC = VIO = 5.5 V | 0.5 | 10 | µA | ||
IIL | Low level input leakage current | nSTB = 0 V, VCC = VIO = 5.5 V | –1 | 1 | µA | ||
ILKG(OFF) | Unpowered leakage current | nSTB = 5.5 V, VCC = 0 V, VIO = 0 V | –1 | 0 | 1 | µA | |
EN TERMINAL (ENABLE MODE INPUT) | |||||||
VIH | High level input voltage | 0.7 VIO | V | ||||
VIL | Low level input voltage | 0.3 VIO | V | ||||
IIH | High level input leakage current | EN = VCC = VIO = 5.5 V | 0.5 | 10 | µA | ||
IIL | Low level input leakage current | EN = 0 V, VCC = VIO = 5.5 V | –1 | 1 | µA | ||
ILKG(OFF) | Unpowered leakage current | EN = 5.5 V, VCC = 0 V, VIO = 0 V | –1 | 0 | 1 | µA | |
INH TERMINAL (INHIBIT OUTPUT) | |||||||
ΔVH | High level voltage drop INH with respect to VSUP | IINH = –0.5 mA | 0.5 | 1 | V | ||
ILKG(INH) | Leakage current | INH = 0 V, Sleep Mode | -5 | 5 | µA | ||
Wake TERMINAL (WAKE INPUT) | |||||||
VIH | High level input voltage | Standby and Sleep Mode | VSUP - 1.9 | V | |||
VIL | Low level input voltage | Standby and Sleep Mode | VSUP - 3.5 | V | |||
IIH | High level input current(5) | WAKE = VSUP – 1 V | –25 | –15 | µA | ||
IIL | Low level input current(5) | WAKE = 1 V | 15 | 25 | µA |
PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | |||
---|---|---|---|---|---|---|---|---|
DRIVER SWITCHING CHARACTERISTICS | ||||||||
tpHR | Propagation delay time, high TXD to driver recessive | See Figure 7-2, Normal mode. RL = 60 Ω, CL = 100 pF, RCM = open | 50 | ns | ||||
tpLD | Propagation delay time, low TXD to driver dominant | 40 | ns | |||||
tsk(p) | Pulse skew (|tpHR - tpLD|) | 10 | ns | |||||
tR | Differential output signal rise time | 45 | ns | |||||
tF | Differential output signal fall time | 45 | ns | |||||
tTXD_DTO | Dominant time out | See Figure 7-9, RL = 60 Ω, CL = open | 1.2 | 3.8 | ms | |||
RECEIVER SWITCHING CHARACTERISTICS | ||||||||
tpRH | Propagation delay time, bus recessive input to high RXD | See Figure 7-3 CL(RXD) = 15 pF | 50 | ns | ||||
tpDL | Propagation delay time, bus dominant input to RXD low output | 50 | ns | |||||
tR | Output signal rise time (RXD) | 8 | ns | |||||
tF | Output signal fall time (RXD) | 8 | ns | |||||
tBUS_DOM | Dominant time out | See Figure 17, RL = 60 Ω, CL = open | 1.3 | 3.8 | ms | |||
tCBF | Bus fault detection time | 45 Ω ≤ RCM ≤ 70 Ω, CL = open | 1.9 | µs | ||||
Wake Terminal (Wake input) | ||||||||
tWAKE_HT | WAKE hold time | See Figure 7-12 and Figure 7-13 Time required for LWU from a high to low or low to high on WAKE | 5 | 50 | µs | |||
Device Switching Characteristics | ||||||||
tPROP(LOOP1) | Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant | See Figure 7-5, Normal mode, RL = 60 Ω, CL = 100 pF, CL(RXD) = 15 pF | 100 | 160 | ns | |||
tPROP(LOOP2) | Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive | 110 | 175 | ns | ||||
tMODE1 | Mode change time | See Figure 7-4 and Figure 7-5, Mode change time for leaving Sleep mode to entering normal and silent mode after VCC and VIO have crossed UV thresholds | 20 | µs | ||||
tMODE2 | Mode change time | Mode changes between Normal, Silent and Standby modes, and Sleep to Standby mode transition | 10 | µs | ||||
tUV_RE-ENABLE | Re-enable time after under voltage event | Time for device to return to normal operation from UVVCC or UVVIO under voltage event | 200 | µs | ||||
tPower_Up | Power up time on VSUP | See Figure 7-11 | 250 | µs | ||||
tWK_FILTER | Bus time to meet filtered bus requirements for wake up request | See Figure 8-5 | 0.5 | 1.8 | µs | |||
tWK_TIMEOUT | Bus Wake-up timeout value | See Figure 8-5 | 0.5 | 2 | ms | |||
tUV | Undervoltage filter time for VIO and VCC | VIO ≤ UVVIO or VCC < UVVCC | 159 | 340 | ms | |||
tGo_To_Sleep | Minimum hold time for transition to sleep mode | EN = H and nSTB = L | 5 | 50 | µs | |||
FD Timing Parameters | ||||||||
tBIT(BUS) | Bit time on CAN bus output pins with tBIT(TXD) = 500 ns, all devices | Normal mode, RL = 60 Ω, CL = 100 pF, CL(RXD) = 15 pF, ΔtREC = tBIT(RXD) - tBIT(BUS) | 435 | 530 | ns | |||
Bit time on CAN bus output pins with tBIT(TXD) = 200 ns, G device variants only | 155 | 210 | ns | |||||
tBIT(RXD) | Bit time on RXD output pins with tBIT(TXD) = 500 ns, all devices | 400 | 550 | ns | ||||
Bit time on RXD output pins with tBIT(TXD) = 200 ns, G device variants only | 120 | 220 | ns | |||||
ΔtREC | Receiver timing symmetry with tBIT(TXD) = 500 ns, all devices | -65 | 40 | ns | ||||
Receiver timing symmetry with tBIT(TXD) = 200 ns, G device variants only | -45 | 15 | ns |
VCC = 5V | VIO = 3.3V | RL = 60Ω |
CL = Open | RCM = Open | STB = 0V |
VCC = 5V | VIO = 3.3V | RL = 60Ω |
CL = Open | RCM = Open | STB = 0V |
VIO = 5V | STB = 0V | RL = 60Ω |
CL = Open | RCM = Open | Temp = 25°C |
VCC = 5V | VIO = 3.3V | RL = 60Ω |
CL = 100pF | CL_RXD = 15pF | STB = 0V |
The TCAN1043xx-Q1 meets or exceeds the specifications of the ISO 11898-2 (2016) High Speed CAN (Controller Area Network) physical layer standard. The device has been certified to the requirements of ISO11898-2/5 according to the GIFT/ICT High Speed CAN test specification.
This device provides CAN transceiver differential transmit capability to the bus and differential receive capability from the bus. The device includes many protection features providing device and CAN bus robustness. All of the devices are available to support CAN and CAN FD (Flexible Data Rate) up to 2Mbps while the G version of the device support CAN and CAN FD data rates up to 5Mbps.