LMX2595 高性能宽带合成器可生成 10MHz 至 20GHz 范围内的任何频率。集成加倍器用于生成 15GHz 以上的频率。品质因数为 -236dBc/Hz 的高性能 PLL 和高相位检测器频率可实现非常低的带内噪声和集成抖动。高速 N 分频器没有预分频器,从而显著减少了杂散的振幅和数量。还有一个可减轻整数边界杂散的可编程输入乘法器。
LMX2595 允许用户同步多个器件的输出,并可在 输入和输出之间确定需要延迟的情况下 应用。频率斜升发生器可在自动斜坡生成选项或手动选项中最多合成 2 段斜坡,以实现最大的灵活性。通过快速校准算法可将频率加快至 20μs 以上。LMX2595 增添了对生成或重复 SYSREF(符合 JESD204B 标准)的支持,此 SYSREF 是高速数据转换器的理想低噪声时钟源。此配置中提供了精细的延迟调节(9ps 分辨率),以解决板迹线的延迟差异。
LMX2595 中的输出驱动器在载波频率为 15GHz 时提供高达 7dBm 的输出功率。该器件采用单个 3.3V 电源供电,并具有集成的 LDO,无需板载低噪声 LDO。
器件型号 | 封装 | 封装尺寸(标称值) |
---|---|---|
LMX2595 | VQFN (40) | 6.00mm × 6.00mm |
Changes from B Revision (March 2018) to C Revision
Changes from A Revision (August 2017) to B Revision
Changes from * Revision (June 2017) to A Revision
MIN | MAX | UNIT | ||
---|---|---|---|---|
VCC | Power supply voltage | –0.3 | 3.6 | V |
TJ | Junction temperature | –40 | 150 | °C |
Tstg | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±750 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
VCC | Power supply voltage | 3.15 | 3.3 | 3.45 | V |
TA | Ambient temperature | –40 | 25 | 85 | °C |
TJ | Junction temperature | 125 | °C |
THERMAL METRIC(1) | LMX2595 | UNIT | |
---|---|---|---|
RHA (VQFN) | |||
40 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 30.5 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance (2) | 15.3 | °C/W |
RθJB | Junction-to-board thermal resistance | 5.4 | °C/W |
ψJT | Junction-to-top characterization parameter | 0.2 | °C/W |
ψJB | Junction-to-board characterization parameter | 5.3 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | 0.9 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |||
---|---|---|---|---|---|---|---|---|
POWER SUPPLY | ||||||||
VCC | Supply voltage | 3.15 | 3.3 | 3.45 | V | |||
ICC | Supply current | OUTA_PD = 0, OUTB_PD = 1
OUTA_MUX = OUTB_MUX = 1 OUTA_PWR = 31, CPG=7 fOSC= fPD = 100 MHz, fVCO = fOUT = 14 GHz pOUT = 3 dBm with 50-Ω resistor pullup |
340 | mA | ||||
Power-on reset current | RESET=1 | 170 | ||||||
Power-down current | POWERDOWN=1 | 5 | ||||||
OUTPUT CHARACTERISTICS | ||||||||
pOUT | Single-ended output power(3)(5) | 50-Ω resistor pullup
OUTx_PWR = 50 |
fOUT = 8 GHz | 5 | dBm | |||
fOUT = 15 GHz | 2 | |||||||
1-nH inductor pullup
OUTx_PWR = 50 |
fOUT = 8 GHz | 10 | ||||||
fOUT = 15 GHz | 7 | |||||||
POUT | Single-ended output power with doubler enabled(6) | 50-Ω resistor pullup
OUTx_PWR = 20 VCO2X_EN = 1 DBLR_IBIAS_CTRL1 = 1572 |
fOUT= 15 GHz | 0 | dBm | |||
fOUT= 19 GHz | –4 | |||||||
1-nH inductor pullup
OUTx_PWR = 20 VCO2X_EN = 1 DBLR_IBIAS_CTRL1 = 1572 |
fOUT= 15 GHz | 6 | ||||||
fOUT= 19 GHz | –1 | |||||||
fVCO2X | VCO doubler output range | VCO doubler enabled | DBLR_IBIAS_CTRL1 = 1572 | 15 | 19 | GHz | ||
DBLR_IBIAS_CTRL1 = 3115 | 15 | 20 | GHz | |||||
LVCO2X | VCO doubler noise floor(6) | 50-Ω resistor pullup
OUTx_PWR = 20 DBLR_IBIAS_CTRL1 = 1572 |
fOUT= 18 GHz | –148 | dBc/Hz | |||
Xtalk | Isolation between outputs A and B. Measured on output A | OUTA_MUX = VCO
OUTB_MUX = channel divider |
–50 | dBc | ||||
H1/2 | 1/2 haromnic spur(6) | OUTA_MUX=VCO2X
fVCO = 9 GHz DBLR_IBIAS_CTRL1 = 1572 |
–10 | dBc | ||||
H2 | Second harmonic(5) | OUTA_MUX = VCO
fVCO = 8 GHz |
–20 | dBc | ||||
OUTA_MUX = VCO
fVCO = 11 GHz |
–30 | |||||||
H3 | Third harmonic(5) | OUTA_MUX = VCO
fVCO = 8 GHz |
–50 | dBc | ||||
INPUT SIGNAL PATH | ||||||||
fOSCin | Reference input frequency | OSC_2X = 0 | 5 | 1400 | MHz | |||
OSC_2X = 1 | 5 | 200 | ||||||
vOSCin | Reference input voltage | AC-coupled required (2) | 0.2 | 2 | Vpp | |||
fMULT | Multiplier frequency (only applies when multiplier is enabled) | Input range | 30 | 70 | MHz | |||
Output range | 180 | 250 | ||||||
PHASE DETECTOR AND CHARGE PUMP | ||||||||
fPD | Phase detector frequency(2) | Integer mode | MASH_ORDER = 0 | 0.125 | 400 | MHz | ||
Fractional mode | MASH_ORDER= 1, 2, 3 | 5 | 300 | |||||
MASH_ORDER = 4 | 5 | 240 | ||||||
ICPout | Charge-pump leakage current | CPG = 0 | 15 | nA | ||||
Effective charge pump current. This is the sum of the up and down currents | CPG = 4 | 3 | mA | |||||
CPG = 1 | 6 | |||||||
CPG = 5 | 9 | |||||||
CPG = 3 | 12 | |||||||
CPG = 7 | 15 | |||||||
PNPLL_1/f | Normalized PLL 1/f noise | fPD = 100 MHz, fVCO = 12 GHz(4)(4)(4)(4) | –129 | dBc/Hz | ||||
PNPLL_flat | Normalized PLL noise floor | –236 | dBc/Hz | |||||
VCO CHARACTERISTICS | ||||||||
PNVCO | VCO phase noise | VCO1
fVCO = 8 GHz |
10 kHz | –80 | dBc/Hz | |||
100 kHz | –107 | |||||||
1 MHz | –128 | |||||||
10 MHz | –148 | |||||||
90 MHz | –157 | |||||||
VCO2
fVCO = 9.2 GHz |
10 kHz | –79 | ||||||
100 kHz | –105 | |||||||
1 MHz | –127 | |||||||
10 MHz | –147 | |||||||
90 MHz | –157 | |||||||
VCO3
fVCO = 10.3 GHz |
10 kHz | –77 | ||||||
100 kHz | –104 | |||||||
1 MHz | –126 | |||||||
10 MHz | –147 | |||||||
90 MHz | –157 | |||||||
VCO4
fVCO = 11.3 GHz |
10 kHz | –76 | ||||||
100 kHz | –103 | |||||||
1 MHz | –125 | |||||||
10 MHz | –145 | |||||||
90 MHz | –158 | |||||||
VCO5
fVCO = 12.5 GHz |
10 kHz | –74 | ||||||
100 kHz | –100 | |||||||
1 MHz | –123 | |||||||
10 MHz | –144 | |||||||
90 MHz | –157 | |||||||
VCO6
fVCO = 13.3 GHz |
10 kHz | –73 | ||||||
100 kHz | –100 | |||||||
1 MHz | –122 | |||||||
10 MHz | –143 | |||||||
90 MHz | –155 | |||||||
VCO7
fVCO = 14.5 GHz |
10 kHz | –73 | ||||||
100 kHz | –99 | |||||||
1 MHz | –121 | |||||||
10 MHz | –143 | |||||||
90 MHz | –152 | |||||||
tVCOCAL | VCO calibration speed | Switch across the entire frequency band
fOSC = 200 MHz, fPD = 100 MHz(1) |
No assist | 50 | µs | |||
Partial assist | 35 | |||||||
Close frequency | 20 | |||||||
Full assist | 5 | |||||||
KVCO | VCO gain | 8 GHz | 92 | MHz/V | ||||
9.2 GHz | 91 | |||||||
10.3 GHz | 115 | |||||||
11.3 GHz | 121 | |||||||
12.5 GHz | 195 | |||||||
13.3 GHz | 190 | |||||||
14.5 GHz | 213 | |||||||
|ΔTCL| | Allowable temperature drift when VCO is not recalibrated | RAMP_EN = 0 or RAMP_MANUAL= 1 | 125 | °C | ||||
H2 | VCO second harmonic | fVCO = 8 GHz, divider disabled | –20 | dBc | ||||
H3 | VCO third haromonic | fVCO = 8 GHz, divider disabled | –50 | |||||
SYNC PIN AND PHASE ALIGNMENT | ||||||||
fOSCinSYNC | Maximum usable OSCin with sync pin (Figure 33) | Category 3 | 0 | 100 | MHz | |||
Categories1 and 2 | 0 | 1400 | ||||||
DIGITAL INTERFACE
Applies to SLK, SDI, CSB, CE, RampDir, RampClk, MUXout, SYNC (CMOS Mode), SysRefReq (CMOS Mode) |
||||||||
VIH | High-level input voltage | 1.4 | Vcc | V | ||||
VIL | Low-level input voltage | 0 | 0.4 | V | ||||
IIH | High-level input current | –25 | 25 | µA | ||||
IIL | Low-level input current | –25 | 25 | µA | ||||
VOH | High-level output voltage | MUXout pin | Load current = –10 mA | VCC – 0.4 | V | |||
VOL | Low-level output voltage | Load current = 10 mA | 0.4 | V |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
SYNC, SYSRefReq, RampClk, and RampDIR Pins | ||||||
tSETUP | Setup time for pin relative to OSCin rising edge | SYNC pin | 2.5 | ns | ||
SysRefReq pin | 2.5 | |||||
tHOLD | Hold time for SYNC pin relative to OSCin rising edge | SYNC pin | 2 | ns | ||
SysRefReq pin | 2 | |||||
DIGITAL INTERFACE WRITE SPECIFICATIONS | ||||||
fSPIWrite | SPI write speed | tCWL + tCWH > 13.333 ns | 75 | MHz | ||
tCE | Clock to enable low time | See Figure 1 | 5 | ns | ||
tDCS | Data to clock setup time | 2 | ns | |||
tCDH | Clock to data hold time | 2 | ns | |||
tCWH | Clock pulse width high | 5 | ns | |||
tCWL | Clock pulse width low | 5 | ns | |||
tECS | Enable to clock setup time | 5 | ns | |||
tEWH | Enable pulse width high | 2 | ns | |||
DIGITAL INTERFACE READBACK SPECIFICATIONS | ||||||
fSPIReadback | SPI readback speed | See Figure 2 | 50 | MHz | ||
tCE | Clock to enable low time | 10 | ns | |||
tDCS | Data to clock setup time | 2 | ns | |||
tCDH | Clock to data hold time | 2 | ns | |||
tCR | Clock falling edge to available readback data wait time. | 0 | 10 | ns | ||
tCWH | Clock pulse width high | 10 | ns | |||
tCWL | Clock pulse width low | 10 | ns | |||
tECS | Enable to clock setup time | 10 | ns | |||
tEWH | Enable pulse width high | 10 | ns |
There are several other considerations for writing on the SPI:
There are several other considerations for SPI readback:
fOSC = 100 MHz | Jitter = 55.8 fs (100 Hz - 100 MHz) | |
fPD = 200 MHz |
fOSC = 100 MHz | Jitter = 46.8 fs (100 Hz - 100 MHz) | |
fPD = 200 MHz |
fOSC = 100 MHz | Jitter = 46.87 fs (100 Hz - 100 MHz) | |
fPD = 200 MHz |
fOSC = 100 MHz | fOUT = 2 × 8.5 GHz = 17 GHz | |
fPD = 200 MHz | Jitter = 55.0 fs (100 Hz - 100 MHz) |
fOSC = 100 MHz | fOUT = 2 × 9.5 GHz = 19 GHz | |
fPD = 200 MHz | Jitter = 54.7 fs (100 Hz - 100 MHz) |
CalTime = 33.6 µs = 5.8 µs (Core) + 14 µs (Fcal) + 13.8 µs (Ampcal) | ||
fOSC = 200 MHz, fPD = 100 MHz, fVCO = 7.5 - 14 GHz, CHDIV = 2 | ||
fVCO = 12 GHz | fPD = 100 MHz | |
fVCO = 8 GHz, Narrow Loop Bandwidth (<100 Hz) |
Single-ended output with resistor pullup. | OUTA_PWR = 20 |
DBLR_IBIAS_CTRL1 = 3115 |
This noise adds to the scaled VCO Noise when the channel divider is used. |
fOSC = 100 MHz | Jitter = 52.6 fs (100 Hz - 100 MHz) | |
fPD = 200 MHz |
fOSC = 100 MHz | Jitter = 46.9 fs (100 Hz - 100 MHz) | |
fPD = 200 MHz |
fOSC = 100 MHz | Jitter = 44.1 fs (100 Hz - 100 MHz) | |
fPD = 200 MHz |
fOSC = 100 MHz | fOUT = 2 × 8 GHz = 16 GHz | |
fPD = 200 MHz | Jitter = 52.9 fs (100 Hz - 100 MHz) | |
fOSC = 100 MHz | fOUT = 2 × 9 GHz = 18 GHz | |
fPD = 200 MHz | Jitter = 52.6 fs (100 Hz - 100 MHz) |
fOSC = 100 MHz | fOUT = 2 × 10 GHz = 20 GHz | |
fPD = 200 MHz | Jitter = 52.7 fs (100 Hz - 100 MHz) |
The glitches in the plot are due to the inability of the measurement equipment to track the VCO while calibrating. |
CalTime = 25.2 µs = 1.3 µs (Core) + 9.1 µs (Fcal) +14.8 µs (Ampcal) | ||
fOSC = 200 MHz, fPD = 100 MHz, fVCO = 7.5 GHz - 14 GHz, CHDIV = 2 |
fOSC = 200 MHz | fVCO = 14.8 GHz |
Single-ended output with resistor pullup and OUTx_PWR = 50. Note that Near 13.3 to 14.3 GHz, output power can be impacted at hot temperature. See the Application Information section for more information. |
The LMX2595 is a high-performance, wideband frequency synthesizer with integrated VCO and output divider. The VCO operates from 7.5 GHz to 15 GHz, and this can be combined with the output divider to produce any frequency in the range of 10 MHz to 15 GHz. The LMX2595 also features a VCO doubler that can be used to produce frequencies up to 20 GHz. Within the input path, there are two dividers and a multiplier for flexible frequency planning. The multiplier also allows the reduction of spurs by moving the frequencies away from the integer boundary.
The PLL is fractional-N PLL with a programmable delta-sigma modulator up to 4th order. The fractional denominator is a programmable 32-bit long, which can easily provide fine frequency steps below 1-Hz resolution, or be used to do exact fractions like 1/3, 7/1000, and many others. The phase frequency detector goes up to 300 MHz in fractional mode or 400 MHz in integer mode, although minimum N-divider values must also be taken into account.
For applications where deterministic or adjustable phase is desired, the SYNC pin can be used to get the phase relationship between the OSCin and RFout pins deterministic. When this is done, the phase can be adjusted in very fine steps of the VCO period divided by the fractional denominator.
The ultra-fast VCO calibration is designed for applications where the frequency must be swept or abruptly changed. The frequency can be manually programmed, or the device can be set up to do ramps and chirps.
The JESD204B support includes using the RFoutB output to create a differential SYSREF output that can be either a single pulse or a series of pulses that occur at a programmable distance away from the rising edges of the output signal.
The LMX2595 device requires only a single 3.3-V power supply. The internal power supplies are provided by integrated LDOs, eliminating the need for high-performance external LDOs.
The digital logic for the SPI interface and is compatible with voltage levels from 1.8 V to 3.3 V.
Table 1 shows the range of several of the dividers, multipliers, and fractional settings.
PARAMETER | MIN | MAX | COMMENTS |
---|---|---|---|
Outputs enabled | 0 | 2 | |
OSCin doubler | 0 (1X) | 1 (2X) | The low noise doubler can be used to increase the phase detector frequency to improve phase noise and avoid spurs. This is in reference to the OSC_2X bit. |
Pre-R divider | 1 (bypass) | 128 | Only use the Pre-R divider if the multiplier is used and the input frequency is too high for the multiplier. |
Multiplier | 3 | 7 | This is in reference to the MULT word. |
Post-R divider | 1 (bypass) | 255 | The maximum input frequency for the Post-R divider is 250 MHz. Use the Pre-R divider if necessary. |
N divider | ≥ 28 | 524287 | The minimum divide depends on modulator order and VCO frequency. See N-Divider and Fractional Circuitry for more details. |
Fractional numerator/ denominator | 1 (Integer mode) | 232 – 1 = 4294967295 | The fractional denominator is programmable and can assume any value between 1 and 232–1; it is not a fixed denominator. |
Fractional order (MASH_ORDER) | 0 | 4 | Order 0 is integer mode and the order can be programmed |
Channel divider | 1 (bypass) | 768 | This is the series of several dividers. Also, be aware that above 10 GHz, the maximum allowable channel divider value is 6. |
Output frequency | 10 MHz | 20 GHz | This is implied by the VCO frequency, channel divider, and VCO doubler. |
The OSCin pins are used as a frequency reference input to the device. The input is high impedance and requires AC-coupling caps at the pin. A CMOS clock or XO can drive the single-ended OSCin pins. Differential clock input is also supported, making it easier to interface with high-performance system clock devices such as TI’s LMK series clock devices. As the OSCin signal is used as a clock for the VCO calibration, a proper reference signal must be applied at the OSCin pin at the time of programming FCAL_EN.
The reference path consists of an OSCin doubler (OSC_2X), Pre-R divider, multiplier (MULT) and a Post-R divider.
The OSCin doubler (OSC_2X) can double up low OSCin frequencies. Pre-R (PLL_R_PRE) and Post-R (PLL_R) dividers both divide frequency down while the multiplier (MULT) multiplies frequency up. The purposes of adding a multiplier is to reduce integer boundary spurs or to increase the phase detector frequency. Use Equation 1 to calculate the phase detector frequency, fPD: