• Menu
  • Product
  • Email
  • PDF
  • Order now
  • 具有宽占空比范围的 LM25145 6V 至 42V 同步降压直流/直流控制器

    • ZHCSGD0 June   2017 LM25145

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • 具有宽占空比范围的 LM25145 6V 至 42V 同步降压直流/直流控制器
  1. 1 特性
  2. 2 应用
  3. 3 说明
  4. 4 修订历史记录
  5. 5 说明 (续)
  6. 6 Pin Configuration and Functions
    1. 6.1 Wettable Flanks
  7. 7 Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
    7. 7.7 Typical Characteristics
  8. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Range (VIN)
      2. 8.3.2  Output Voltage Setpoint and Accuracy (FB)
      3. 8.3.3  High-Voltage Bias Supply Regulator (VCC)
      4. 8.3.4  Precision Enable (EN/UVLO)
      5. 8.3.5  Power Good Monitor (PGOOD)
      6. 8.3.6  Switching Frequency (RT, SYNCIN)
        1. 8.3.6.1 Frequency Adjust
        2. 8.3.6.2 Clock Synchronization
      7. 8.3.7  Configurable Soft-Start (SS/TRK)
        1. 8.3.7.1 Tracking
      8. 8.3.8  Voltage-Mode Control (COMP)
      9. 8.3.9  Gate Drivers (LO, HO)
      10. 8.3.10 Current Sensing and Overcurrent Protection (ILIM)
      11. 8.3.11 OCP Duty Cycle Limiter
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Active Mode
      4. 8.4.4 Diode Emulation Mode
      5. 8.4.5 Thermal Shutdown
  9. 9 Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Design and Implementation
      2. 9.1.2 Power Train Components
        1. 9.1.2.1 Inductor
        2. 9.1.2.2 Output Capacitors
        3. 9.1.2.3 Input Capacitors
        4. 9.1.2.4 Power MOSFETs
      3. 9.1.3 Control Loop Compensation
      4. 9.1.4 EMI Filter Design
    2. 9.2 Typical Applications
      1. 9.2.1 Design 1 - 20-A High-Efficiency Synchronous Buck Regulator for Telecom Power Applications
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Custom Design With WEBENCH® Tools
        4. 9.2.1.4 Application Curves
      2. 9.2.2 Design 2 - High Density, 12-V, 8-A Rail With LDO Low-Noise Auxiliary Output for Industrial Applications
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Application Curves
      3. 9.2.3 Design 3 - Powering a Multicore DSP From a 24-V Rail
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
        3. 9.2.3.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Power Stage Layout
      2. 11.1.2 Gate Drive Layout
      3. 11.1.3 PWM Controller Layout
      4. 11.1.4 Thermal Design and Layout
      5. 11.1.5 Ground Plane Design
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 第三方产品免责声明
      2. 12.1.2 开发支持
      3. 12.1.3 使用 WEBENCH® 工具定制设计方案
    2. 12.2 文档支持
      1. 12.2.1 相关文档
        1. 12.2.1.1 PCB 布局资源
        2. 12.2.1.2 热设计资源
    3. 12.3 相关链接
    4. 12.4 接收文档更新通知
    5. 12.5 社区资源
    6. 12.6 商标
    7. 12.7 静电放电警告
    8. 12.8 Glossary
  13. 13机械、封装和可订购信息
  14. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

具有宽占空比范围的 LM25145 6V 至 42V 同步降压直流/直流控制器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 多功能同步降压直流/直流控制器
    • 宽输入电压范围为 6V 至 42V
    • 可调节输出电压范围为 0.8V 至 40V
  • 符合 EN55022/CISPR 22 EMI 标准
  • 无损 RDS(on) 或分流电流感应
  • 开关频率范围为 100kHz 至 1MHz
    • 同步输入和同步输出能力
  • 40ns 最短导通时间,可实现高 VIN/VOUT 比率
  • 140ns 最短关闭时间,以实现低压差
  • 具有 ±1% 反馈精度的 0.8V 基准
  • 适用于标准 VTH MOSFET 的 7.5V 栅极驱动器
    • 14ns 自适应死区时间控制
    • 2.3A 拉电流和 3.5A 灌电流能力
    • 针对预偏置启动的低侧软启动
  • 可调软启动或可选电压跟踪
  • 快速线路和负载瞬态响应
    • 具有线路前馈的电压模式控制
    • 高增益带宽误差放大器
  • 精密使能端输入和漏极开路电源正常指示器(用于排序和控制)
  • 固有保护 特性 可实现稳健设计
    • 间断模式过流保护
    • 具有迟滞的输入 UVLO
    • VCC 和栅极驱动 UVLO 保护
    • 具有迟滞的热关断保护
  • 具有可湿性侧面的 VQFN-20 封装
  • 使用 LM25145 并借助 WEBENCH® 电源设计器创建定制设计

2 应用

  • 电信基础设施
  • 工厂自动化
  • 测试与测量
  • 工业电机驱动

3 说明

LM25145 42V 同步降压控制器旨在对会发生高压瞬变的高输入电压源或输入电源轨的电压进行调节,从而最大限度地减少对外部浪涌抑制组件的需求。40ns 的高侧开关最短导通时间有助于获得较大的降压比,支持从 24V 标称输入到低电压轨的直接降压转换,从而降低系统的复杂性并减少解决方案成本。LM25145 在输入电压突降至 6V 时,仍能根据需要以接近 100% 的占空比继续工作,因此非常适用于高性能工业控制、机器人、数据通信和射频功率放大器 应用。

强制 PWM (FPWM) 模式运行可以消除频率变化以最大程度地降低 EMI,而用户可选的二极管仿真功能则可以降低轻负载条件下的电流消耗。逐周期过流保护可通过测量低侧 MOSFET 上的压降或使用可选电流感应电阻器来实现。高达 1MHz 的可调开关频率可同步至外部时钟源,以消除噪声敏感应用中的 拍频。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
LM25145 VQFN (20) 3.50mm × 4.50mm
  1. 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。

典型应用电路和效率性能,VOUT = 5V,FSW = 225kHz

LM25145 LM25145_front_page_image_nvsat9.gif

4 修订历史记录

日期 修订版本 注释
2017 年 6 月 * 最初发布版本

空白

5 说明 (续)

LM25145 电压模式控制器使用适用于标准阈值 MOSFET 的可靠的 7.5V 栅极驱动器驱动外部高侧和低侧 N 通道电源开关。具有 2.3A 拉电流和 3.5A 灌电流能力的自适应定时栅极驱动器可在开关切换期间最大限度地减少体二极管导通,从而降低在以高输入电压和高频率驱动 MOSFET 时的开关损耗并提高热性能。LM25145 可从开关稳压器的输出或其他可用的源供电,从而进一步提高效率。

180° 异相时钟输出(相对于内部振荡器的同步输出)非常适用于级联或多通道电源,可降低输入电容器纹波电流和 EMI 滤波器尺寸。其他 的 LM25145 功能还包括可配置软启动、用于故障报告和输出监控的漏极开路电源正常监控、单调启动至预偏置负载、集成 VCC 偏置电源稳压器和自举二极管、外部电源跟踪、针对可调线路欠压锁定 (UVLO) 且具有迟滞的精密使能端输入、间断模式过载保护和带自动恢复的热关断保护。

LM25145 控制器采用 3.5mm × 4.5mm 热增强型 20 引脚 VQFN 封装,并为高电压引脚和可湿性侧面留出额外间距,以便对焊锡接点填角焊缝进行光学检测。

6 Pin Configuration and Functions

RGY Package
20-Pin VQFN With Wettable Flanks
Top View
LM25145 pinout_01_snvsai4.gif
Connect Exposed Pad on bottom to AGND and PGND on the PCB.

Pin Functions

PIN TYPE(1) DESCRIPTION
NO. NAME
1 EN/UVLO I Enable input and undervoltage lockout programming pin. If the EN/UVLO voltage is below 0.4 V, the controller is in the shutdown mode with all functions disabled. If the EN/UVLO voltage is greater than 0.4 V and less than 1.2 V, the regulator is in standby mode with the VCC regulator operational, the SS pin grounded, and no switching at the HO and LO outputs. If the EN/UVLO voltage is above 1.2 V, the SS/TRK pin is allowed to ramp and pulse-width modulated gate drive signals are delivered to the HO and LO pins. A 10-μA current source is enabled when EN/UVLO exceeds 1.2 V and flows through the external UVLO resistor divider to provide hysteresis. Hysteresis can be adjusted by varying the resistance of the external divider.
2 RT I Oscillator frequency adjust pin. The internal oscillator is programmed with a single resistor between RT and the AGND. The recommended maximum oscillator frequency is 1 MHz. An RT pin resistor is required even when using the SYNCIN pin to synchronize to an external clock.
3 SS/TRK I Soft-start and voltage tracking pin. An external capacitor and an internal 10-μA current source set the ramp rate of the error amplifier reference during start-up. When the SS/TRK pin voltage is less than 0.8 V, the SS/TRK voltage controls the noninverting input of the error amp. When the SS/TRK voltage exceeds 0.8 V, the amplifier is controlled by the internal 0.8-V reference. SS/TRK is discharged to ground during standby and fault conditions. After start-up, the SS/TRK voltage is clamped 115 mV above the FB pin voltage. If FB falls due to a load fault, SS/TRK is discharged to a level 115 mV above FB to provide a controlled recovery when the fault is removed. Voltage tracking can be implemented by connecting a low impedance reference between 0 V and 0.8 V to the SS/TRK pin. The 10-µA SS/TRK charging current flows into the reference and produces a voltage error if the impedance is not low. Connect a minimum capacitance from SS/TRK to AGND of 2.2 nF.
4 COMP O Low impedance output of the internal error amplifier. The loop compensation network should be connected between the COMP pin and the FB pin.
5 FB I Feedback connection to the inverting input of the internal error amplifier. A resistor divider from the output to this pin sets the output voltage level. The regulation threshold at the FB pin is nominally 0.8 V.
6 AGND P Analog ground. Return for the internal 0.8-V voltage reference and analog circuits.
7 SYNCOUT O Synchronization output. Logic output that provides a clock signal that is 180° out-of-phase with the high-side FET gate drive. Connect SYNCOUT of the master LM25145 to the SYNCIN pin of a second LM25145 to operate two controllers at the same frequency with 180° interleaved high-side FET switch turnon transitions. Note that the SYNCOUT pin does not provide 180° interleaving when the controller is operating from an external clock that is different from the free-running frequency set by the RT resistor.
8 SYNCIN I Dual function pin for providing an optional clock input and for enabling diode emulation by the low-side MOSFET. Connecting a clock signal to the SYNCIN pin synchronizes switching to the external clock. Diode emulation by the low-side MOSFET is disabled when the controller is synchronized to an external clock, and negative inductor current can flow in the low-side MOSFET with light loads. A continuous logic low state at the SYNCIN pin enables diode emulation to prevent reverse current flow in the inductor. Diode emulation results in DCM operation at light loads, which improves efficiency. A logic high state at the SYNCIN pin disables diode emulation producing forced-PWM (FPWM) operation. During soft-start when SYNCIN is high or a clock signal is present, the LM25145 operates in diode emulation mode until the output is in regulation, then gradually increases the SW zero-cross threshold, resulting in a gradual transition from DCM to FPWM.
9 NC — No electrical connection.
10 PGOOD O Power Good indicator. This pin is an open-drain output. A high state indicates that the voltage at the FB pin is within a specified tolerance window centered at 0.8 V.
11 ILIM I Current limit adjust and current sense comparator input. A current sourced from the ILIM pin through an external resistor programs the threshold voltage for valley current limiting. The opposite end of the threshold adjust resistor can be connected to either the drain of the low-side MOSFET for RDS(on) sensing or to a current sense resistor connected to the source of the low-side FET.
12 PGND P Power ground return pin for the low-side MOSFET gate driver. Connect directly to the source of the low-side MOSFET or the ground side of a shunt resistor.
13 LO P Low-side MOSFET gate drive output. Connect to the gate of the low-side synchronous rectifier FET through a short, low inductance path.
14 VCC O Output of the 7.5-V bias regulator. Locally decouple to PGND using a low ESR/ESL capacitor located as close to the controller as possible. Controller bias can be supplied from an external supply that is greater than the internal VCC regulation voltage. Use caution when applying external bias to ensure that the applied voltage is not greater than the minimum VIN voltage and does not exceed the VCC pin maximum operating rating, see Recommended Operating Conditions.
15 EP — Pin internally connected to exposed pad of the package. Electrically isolated.
16 NC — No electrical connection.
17 BST O Bootstrap supply for the high-side gate driver. Connect to the bootstrap capacitor. The bootstrap capacitor supplies current to the high-side FET gate and should be placed as close to controller as possible. If an external bootstrap diode is used to reduce the time required to charge the bootstrap capacitor, connect the cathode of the diode to the BST pin and anode to VCC.
18 HO P High-side MOSFET gate drive output. Connect to the gate of the high-side MOSFET through a short, low inductance path.
19 SW P Switching node of the buck controller. Connect to the bootstrap capacitor, the source terminal of the high-side MOSFET and the drain terminal of the low-side MOSFET using short, low inductance paths.
20 VIN P Supply voltage input for the VCC LDO regulator.
— EP — Exposed pad of the package. Electrically isolated. Solder to the system ground plane to reduce thermal resistance.
(1) P = Power, G = Ground, I = Input, O = Output.

6.1 Wettable Flanks

100% automated visual inspection (AVI) post-assembly is typically required to meet requirements for high reliability and robustness. Standard quad-flat no-lead (VQFN) packages do not have solderable or exposed pins and terminals that are easily viewed. It is therefore difficult to determine visually whether or not the package is successfully soldered onto the printed-circuit board (PCB). The wettable-flank process was developed to resolve the issue of side-lead wetting of leadless packaging. The LM25145 is assembled using a 20-pin VQFN package with wettable flanks to provide a visual indicator of solderability, which reduces the inspection time and manufacturing costs.

7 Specifications

7.1 Absolute Maximum Ratings

Over the recommended operating junction temperature range of –40°C to 125°C (unless otherwise noted).(1)
MIN MAX UNIT
Input voltages VIN –0.3 45 V
SW –1 45
SW (20-ns transient) –5 45
ILIM –1 45
EN/UVLO –0.3 45
VCC –0.3 14
FB, COMP, SS/TRK, RT –0.3 6
SYNCIN –0.3 14
Output voltages BST –0.3 60 V
BST to VCC 45
BST to SW –0.3 14
VCC to BST (20-ns transient) 7
LO (20-ns transient) –3
PGOOD –0.3 14
Operating junction temperature, TJ 150 °C
Storage temperature, Tstg –55 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

Over the recommended operating junction temperature range of –40°C to 125°C (unless otherwise noted).(1)
MIN NOM MAX UNIT
VI Input voltages VIN 6 42 V
SW –1 42
ILIM –1 42
External VCC bias rail 8 13
EN/UVLO 0 42
VO Output voltages BST –0.3 55 V
BST to VCC 42
BST to SW 5 13
PGOOD 13
ISINK, ISRC Sink/source currents SYNCOUT –1 1 mA
PGOOD 2
TJ Operating junction temperature –40 125 °C
(1) Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test conditions, see Electrical Characteristics.

7.4 Thermal Information

THERMAL METRIC(1) LM25145 UNIT
RGY (VQFN)
20 PINS
RθJA Junction-to-ambient thermal resistance 36.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 28 °C/W
RθJB Junction-to-board thermal resistance 11.8 °C/W
ψJT Junction-to-top characterization parameter 0.4 °C/W
ψJB Junction-to-board characterization parameter 11.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.1 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the –40°C to 125°C junction temperature range unless otherwise stated. VIN = 24 V, VEN/UVLO = 1.5 V, RRT = 25 kΩ unless otherwise stated.(1)(2)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT SUPPLY
VIN Operating input voltage range 6 42 V
IQ-RUN Operating input current, not switching VEN/UVLO = 1.5 V, VSS/TRK = 0 V 1.8 2.1 mA
IQ-STBY Standby input current VEN/UVLO = 1 V 1.75 2 mA
IQ-SDN Shutdown input current VEN/UVLO = 0 V, VVCC < 1 V 13.5 16 µA
VCC REGULATOR
VVCC VCC regulation voltage VSS/TRK = 0 V, 9 V ≤ VVIN ≤ 42 V,
0 mA < IVCC ≤ 20 mA
7.3 7.5 7.7 V
VVCC-LDO VIN to VCC dropout voltage VVIN = 6 V, VSS/TRK = 0 V, IVCC = 20 mA 0.25 0.63 V
ISC-LDO VCC short-circuit current VSS/TRK = 0 V, VVCC = 0 V 40 50 70 mA
VVCC-UV VCC undervoltage threshold VVCC rising 4.8 4.93 5.2 V
VVCC-UVH VCC undervoltage hysteresis Rising threshold – falling threshold 0.26 V
VVCC-EXT Minimum external bias supply voltage Voltage required to disable VCC regulator 8 V
IVCC External VCC input current, not switching VSS/TRK = 0 V, VVCC = 13 V 2.1 mA
ENABLE AND INPUT UVLO
VSDN Shutdown to standby threshold VEN/UVLO rising 0.42 V
VSDN-HYS Shutdown threshold hysteresis EN/UVLO rising – falling threshold 50 mV
VEN Standby to operating threshold VEN/UVLO rising 1.164 1.2 1.236 V
IEN-HYS Standby to operating hysteresis current VEN/UVLO = 1.5 V 9 10 11 µA
ERROR AMPLIFIER
VREF FB reference voltage FB connected to COMP 792 800 808 mV
IFB-BIAS FB input bias current VFB = 0.8 V –0.1 0.1 µA
VCOMP-OH COMP output high voltage VFB = 0 V, COMP sourcing 1 mA 5 V
VCOMP-OL COMP output low voltage COMP sinking 1 mA 0.3 V
AVOL DC gain 94 dB
GBW Unity gain bandwidth 6.5 MHz
SOFT-START AND VOLTAGE TRACKING
ISS SS/TRK capacitor charging current VSS/TRK = 0 V 8.5 10 12 µA
RSS SS/TRK discharge FET resistance VEN/UVLO = 1 V, VSS/TRK = 0.1 V 11 Ω
VSS-FB SS/TRK to FB offset –15 15 mV
VSS-CLAMP SS/TRK clamp voltage VSS/TRK – VFB, VFB = 0.8 V 115 mV
POWER GOOD INDICATOR
PGUTH FB upper threshold for PGOOD high to low % of VREF, VFB rising 106% 108% 110%
PGLTH FB lower threshold for PGOOD high to low % of VREF, VFB falling 90% 92% 94%
PGHYS_U PGOOD upper threshold hysteresis % of VREF 3%
PGHYS_L PGOOD lower threshold hysteresis % of VREF 2%
TPG-RISE PGOOD rising filter FB to PGOOD rising edge 25 µs
TPG-FALL PGOOD falling filter FB to PGOOD falling edge 25 µs
VPG-OL PGOOD low state output voltage VFB = 0.9 V, IPGOOD = 2 mA 150 mV
IPG-OH PGOOD high state leakage current VFB = 0.8 V, VPGOOD = 13 V 100 nA
OSCILLATOR
FSW1 Oscillator Frequency – 1 RRT = 100 kΩ 100 kHz
FSW2 Oscillator Frequency – 2 RRT = 25 kΩ 380 400 420 kHz
FSW3 Oscillator Frequency – 3 RRT = 12.5 kΩ 780 kHz
SYNCHRONIZATION INPUT AND OUTPUT
FSYNC SYNCIN external clock frequency range % of nominal frequency set by RRT –20% +50%
VSYNC-IH Minimum SYNCIN input logic high 2 V
VSYNC-IL Maximum SYNCIN input logic low 0.8 V
RSYNCIN SYNCIN input resistance VSYNCIN = 3 V 20 kΩ
TSYNCI-PW SYNCIN input minimum pulsewidth Minimum high state or low state duration 50 ns
VSYNCO-OH SYNCOUT high state output voltage ISYNCOUT = –1 mA (sourcing) 3 V
VSYNCO-OL SYNCOUT low state output voltage ISYNCOUT = 1 mA (sinking) 0.4 V
TSYNCOUT Delay from HO rising to SYNCOUT leading edge VSYNCIN = 0 V, TS = 1/FSW,
FSW set by RRT
TS/2 – 140 ns
TSYNCIN Delay from SYNCIN leading edge to HO rising 50% to 50% 150 ns
BOOTSTRAP DIODE AND UNDERVOLTAGE THRESHOLD
VBST-FWD Diode forward voltage, VCC to BST VCC to BST, BST pin sourcing 20 mA 0.75 0.9 V
IQ-BST BST to SW quiescent current, not switching VSS/TRK = 0 V, VSW = 24 V, VBST = 30 V 80 µA
VBST-UV BST to SW undervoltage detection VBST – VSW falling 3.4 V
VBST-HYS BST to SW undervoltage hysteresis VBST – VSW rising 0.42 V
PWM CONTROL
TON(MIN) Minimum controllable on-time VBST – VSW = 7 V, HO 50% to 50% 40 60 ns
TOFF(MIN) Minimum off-time VBST – VSW = 7 V, HO 50% to 50% 140 200 ns
DC100kHz Maximum duty cycle FSW = 100 kHz, 6 V ≤ VVIN ≤ 42 V 98% 99%
DC400kHz FSW = 400 kHz, 6 V ≤ VVIN ≤ 42 V 90% 94%
VRAMP(min) Ramp valley voltage (COMP at 0% duty cycle) 300 mV
kFF PWM feedforward gain (VIN / VRAMP) 6 V ≤ VVIN ≤ 42 V 15 V/V
OVERCURRENT PROTECT (OCP) – VALLEY CURRENT LIMITING
IRS ILIM source current, RSENSE mode Low voltage detected at ILIM 90 100 110 µA
IRDSON ILIM source current, RDS(on) mode SW voltage detected at ILIM, TJ = 25°C 180 200 220 µA
IRSTC ILIM current tempco RDS-ON mode 4500 ppm/°C
IRDSONTC ILIM current tempco RSENSE mode 0 ppm/°C
VILIM-TH ILIM comparator threshold at ILIM –8 –2 3.5 mV
SHORT-CIRCUIT PROTECT (SCP) – DUTY CYCLE CLAMP
VCLAMP-OS Clamp offset voltage – no current limiting CLAMP to COMP steady state offset voltage 0.2 + VVIN/75 V
VCLAMP-MIN Minimum clamp voltage CLAMP voltage with continuous current limiting 0.3 + VVIN/150 V
HICCUP MODE FAULT PROTECTION
CHICC-DEL Hiccup mode activation delay Clock cycles with current limiting before hiccup off-time activated 128 cycles
CHICCUP Hiccup mode off-time after activation Clock cycles with no switching followed by SS/TRK release 8192 cycles
DIODE EMULATION
VZCD-SS Zero-cross detect (ZCD) soft-start ramp ZCD threshold measured at SW pin
50 clock cycles after first HO pulse
0 mV
VZCD-DIS Zero-cross detect disable threshold (CCM) ZCD threshold measured at SW pin
1000 clock cycles after first HO pulse
200 mV
VDEM-TH Diode emulation zero-cross threshold Measured at SW with VSW rising –5 0 5 mV
GATE DRIVERS
RHO-UP HO high-state resistance, HO to BST VBST – VSW = 7 V, IHO = –100 mA 1.5 Ω
RHO-DOWN HO low-state resistance, HO to SW VBST – VSW = 7 V, IHO = 100 mA 0.9 Ω
RLO-UP LO high-state resistance, LO to VCC VBST – VSW = 7 V, ILO = –100 mA 1.5 Ω
RLO-DOWN LO low-state resistance, LO to PGND VBST – VSW = 7 V, ILO = 100 mA 0.9 Ω
IHOH, ILOH HO, LO source current VBST – VSW = 7 V, HO = SW, LO = AGND 2.3 A
IHOL, ILOL HO, LO sink current VBST – VSW = 7 V, HO = BST, LO = VCC 3.5 A
THERMAL SHUTDOWN
TSD Thermal shutdown threshold TJ rising 175 °C
TSD-HYS Thermal shutdown hysteresis 20 °C
(1) All minimum and maximum limits are specified by correlating the electrical characteristics to process and temperature variations and applying statistical process control.
(2) The junction temperature (TJ in °C) is calculated from the ambient temperature (TA in °C) and power dissipation (PD in Watts) as follows: TJ = TA + (PD • RθJA) where RθJA (in °C/W) is the package thermal impedance provided in Thermal Information.

7.6 Switching Characteristics

Over operating free-air temperature range (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
THO-TR
TLO-TR
HO, LO rise times VBST – VSW = 7 V, CLOAD = 1 nF, 20% to 80% 7 ns
THO-TF
TLO-TF
HO, LO fall times VBST – VSW = 7 V, CLOAD = 1 nF, 80% to 20% 4 ns
THO-DT HO turnon dead time VBST – VSW = 7 V, LO off to HO on, 50% to 50% 14 ns
TLO-DT LO turnon dead time VBST – VSW = 7 V, HO off to LO on, 50% to 50% 14 ns

7.7 Typical Characteristics

VVIN = 24 V, RRT = 25 kΩ, SYNCIN tied to VCC, EN/UVLO tied to VIN (unless otherwise noted).
LM25145 D050_snvsat9.gif
VOUT = 5 V
See Figure 46
VSYNCIN = VVCC FSW = 500 kHz
RRT = 20 kΩ
Figure 1. Efficiency vs Load, CCM
LM25145 D052_snvsat9.gif
VOUT = 12 V
See Figure 57
VSYNCIN = VVCC FSW = 425 kHz
RRT = 23.7 kΩ
Figure 3. Efficiency vs Load, CCM
LM25145 D043_snvsai4.gif
VOUT = 1.1 V
See Figure 70
FSW = 300 kHz
RRT = 33.2 kΩ
Figure 5. Efficiency vs Load, CCM
LM25145 D020_snvsai4.gif
Figure 7. TON(min) and TOFF(min) vs Junction Temperature
LM25145 D061_snvsat9.gif
VSW = 0 V VEN/UVLO = 1 V
Figure 9. IQ-STANDBY vs Input Voltage
LM25145 D063_snvsat9.gif
VSW = 0 V HO, LO Open
Figure 11. IQ-OPERATING (Switching) vs Input Voltage
LM25145 D008_snvsai4.gif
Figure 13. ILIM Current Source vs Junction Temperature
LM25145 D030_snvsai4.gif
Figure 15. VCC UVLO Thresholds vs Junction Temperature
LM25145 D028_snvsai4.gif
Figure 17. PGOOD UVP Thresholds vs Junction Temperature
LM25145 D027_snvsai4.gif
Figure 19. EN/UVLO Threshold vs Junction Temperature
LM25145 D011_snvsai4.gif
VSW = 0 V
Figure 21. Oscillator Frequency vs RT Resistance
LM25145 D013_snvsai4.gif
Figure 23. BST Diode Forward Voltage vs Current
LM25145 D015_snvsai4.gif
Figure 25. HO Driver Resistance vs VCC Voltage
LM25145 D065_snvsat9.gif
VSS/TRK = 0 V
Figure 27. VCC Voltage vs Input Voltage
LM25145 D019_snvsai4.gif
VIN = 12 V
Figure 29. VCC vs ICC Characteristic
LM25145 D051_snvsat9.gif
VOUT = 5 V
See Figure 46
VSYNCIN = 0 V FSW = 500 kHz
RRT = 20 kΩ
Figure 2. Efficiency vs Load, DCM
LM25145 D053_snvsat9.gif
VOUT = 12 V
See Figure 57
VSYNCIN = 0 V FSW = 425 kHz
RRT = 23.7 kΩ
Figure 4. Efficiency vs Load, DCM
(VOUT Supplies Bias Power to VCC)
LM25145 D024_snvsai4.gif
Figure 6. FB Voltage vs Junction Temperature
LM25145 D060_snvsat9.gif
VSW = 0 V VEN/UVLO = 0 V
Figure 8. IQ-SHD vs Input Voltage
LM25145 D062_snvsat9.gif
VSW = 0 V VEN/UVLO = VVIN VSS/TRK = 0 V
Figure 10. IQ-OPERATING (Nonswitching) vs Input Voltage
LM25145 D064_snvsat9.gif
VSW = 0 V VVCC = VBST = VILIM VFB = 0 V
Figure 12. VIN Quiescent Current With External VCC Applied
LM25145 D009_snvsai4.gif
VSW = 0 V
Figure 14. Dead Time vs Junction Temperature
LM25145 D023_snvsai4.gif
Figure 16. BST UVLO Thresholds vs Junction Temperature
LM25145 D029_snvsai4.gif
Figure 18. PGOOD OVP Thresholds vs Junction Temperature
LM25145 D026_snvsai4.gif
Figure 20. EN Standby Thresholds vs Junction Temperature
LM25145 D010_snvsai4.gif
Figure 22. Oscillator Frequency vs Junction Temperature
LM25145 D014_snvsai4.gif
Figure 24. Gate Driver Peak Current vs VCC Voltage
LM25145 D016_snvsai4.gif
Figure 26. LO Driver Resistance vs VCC Voltage
LM25145 D018_snvsai4.gif
VIN = 6 V
Figure 28. VCC vs ICC Characteristic
LM25145 D022_snvsai4.gif
Figure 30. SS/TRK Current Source vs Junction Temperature

8 Detailed Description

8.1 Overview

The LM25145 is a 42-V synchronous buck controller that features all of the functions necessary to implement a high efficiency step-down power supply with output voltage ranging from 0.8 V to 40 V. The voltage-mode control architecture uses input feedforward for excellent line transient response over a wide VIN range. Voltage-mode control supports the wide duty cycle range for high input voltage and low dropout applications as well as when a high voltage conversion ratio (for example, 10-to-1) is required. Current sensing for cycle-by-cycle current limit can be implemented with either the low-side FET RDS(on) or a current sense resistor. The operating frequency is programmable from 100 kHz to 1 MHz. The LM25145 drives external high-side and low-side NMOS power switches with robust 7.5-V gate drivers suitable for standard threshold MOSFETs. Adaptive dead-time control between the high-side and low-side drivers is designed to minimize body diode conduction during switching transitions. An external bias supply can be connected to the VCC pin to improve efficiency in high-voltage applications. A user-selectable diode emulation feature enables discontinuous conduction mode operation for improved efficiency and lower dissipation at light-load conditions.

8.2 Functional Block Diagram

LM25145 fbd_snvsai4.gif

8.3 Feature Description

8.3.1 Input Range (VIN)

The LM25145 operational input voltage range is from 6 V to 42 V. The device is intended for step-down conversions from 12-V, 24-V, 28-V and 36-V unregulated, semiregulated, and fully-regulated supply rails. The application circuit of Figure 31 shows all the necessary components to implement an LM25145-based wide-VIN step-down regulator using a single supply. The LM25145 uses an internal LDO subregulator to provide a 7.5-V VCC bias rail for the gate drive and control circuits (assuming the input voltage is higher than 7.5 V plus the necessary subregulator dropout specification).

LM25145 LM25145_front_page_schematic_nvsat9.gif Figure 31. Schematic Diagram for VIN Operating Range of 6 V to 42 V

In high voltage applications, take extra care to ensure the VIN pin does not exceed the absolute maximum voltage rating of 55 V during line or load transient events. Voltage ringing on the VIN pin that exceeds the Absolute Maximum Ratings can damage the IC. Use high-quality ceramic input capacitors to minimize ringing. An RC filter from the input rail to the VIN pin (for example, 4.7 Ω and 0.1 µF) provides supplementary filtering at the VIN pin.

8.3.2 Output Voltage Setpoint and Accuracy (FB)

The reference voltage at the FB pin is set at 0.8 V with a feedback system accuracy over the full junction temperature range of ±1%. Junction temperature range for the device is –40°C to +125°C. While dependent on switching frequency and load current levels, the LM25145 is generally capable of providing output voltages in the range of 0.8 V to a maximum of slightly less than VIN. The DC output voltage setpoint during normal operation is set by the feedback resistor network, RFB1 and RFB2, connected to the output.

8.3.3 High-Voltage Bias Supply Regulator (VCC)

The LM25145 contains an internal high-voltage VCC regulator that provides a bias supply for the PWM controller and its gate drivers for the external MOSFETs. The input pin (VIN) can be connected directly to an input voltage source up to 42 V. The output of the VCC regulator is set to 7.5 V. However, when the input voltage is below the VCC setpoint level, the VCC output tracks VIN with a small voltage drop. Connect a ceramic decoupling capacitor between 1 µF and 5 µF from VCC to AGND for stability.

The VCC regulator output has a current limit of 40 mA (minimum). At power up, the regulator sources current into the capacitor connected to the VCC pin. When the VCC voltage exceeds its rising UVLO threshold of 4.93 V, the output is enabled (if EN/UVLO is above 1.2 V) and the soft-start sequence begins. The output remain active until the VCC voltage falls below its falling UVLO threshold of 4.67 V (typical) or if EN/UVLO goes to a standby or shutdown state.

Internal power dissipation of the VCC regulator can be minimized by connecting the output voltage or an auxiliary bias supply rail (up to 13 V) to VCC using a diode DVCC as shown in Figure 32. A diode in series with the input prevents reverse current flow from VCC to VIN if the input voltage falls below the external VCC rail.

LM25145 External_VCC_LM25145_nvsat9.gif Figure 32. VCC Bias Supply Connection From VOUT or Auxiliary Supply

Note that a finite bias supply regulator dropout voltage exists and is manifested to a larger extent when driving high gate charge (QG) power MOSFETs at elevated switching frequencies. For example, at VVIN = 6 V, the VCC voltage is 5.8 V with a DC operating current, IVCC, of 20 mA. Such a low gate drive voltage may be insufficient to fully enhance the power MOSFETs. At the very least, MOSFET on-state resistance, RDS(ON), may increase at such low gate drive voltage.

Here are the main considerations when operating at input voltages below 7.5 V:

  • Increased MOSFET RDS(on) at lower VGS, leading to Increased conduction losses and reduced OCP setpoint.
  • Increased switching losses given the slower switching times when operating at lower gate voltages.
  • Restricted range of suitable power MOSFETs to choose from (MOSFETs with RDS(on) rated at VGS = 4.5 V become mandatory).

8.3.4 Precision Enable (EN/UVLO)

The EN/UVLO input supports adjustable input undervoltage lockout (UVLO) with hysteresis programmed by the resistor values for application specific power-up and power-down requirements. EN/UVLO connects to a comparator-based input referenced to a 1.2-V bandgap voltage. An external logic signal can be used to drive the EN/UVLO input to toggle the output ON and OFF and for system sequencing or protection. The simplest way to enable the operation of the LM25145 is to connect EN/UVLO directly to VIN. This allows self start-up of the LM25145 when VCC is within its valid operating range. However, many applications benefit from using a resistor divider RUV1 and RUV2 as shown in Figure 33 to establish a precision UVLO level.

Use Equation 1 and Equation 2 to calculate the UVLO resistors given the required input turnon and turnoff voltages.

Equation 1. LM25145 q_Ruv1_nvsai4.gif
Equation 2. LM25145 q_Ruv2_nvsai4.gif
LM25145 LM25145_UVLOcircuit_nvsat9.gif Figure 33. Programmable Input Voltage UVLO Turnon and Turnoff

The LM25145 enters a low IQ shutdown mode when EN/UVLO is pulled below approximately 0.4 V. The internal LDO regulator powers off and the internal bias supply rail collapses, shutting down the bias currents of the LM25145. The LM25145 operates in standby mode when the EN/UVLO voltage is between the hard shutdown and precision enable (standby) thresholds.

8.3.5 Power Good Monitor (PGOOD)

The LM25145 provides a PGOOD flag pin to indicate when the output voltage is within a regulation window. Use the PGOOD signal as shown in Figure 34 for start-up sequencing of downstream converters, fault protection, and output monitoring. PGOOD is an open-drain output that requires a pullup resistor to a DC supply not greater than 13 V. The typical range of pullup resistance is 10 kΩ to 100 kΩ. If necessary, use a resistor divider to decrease the voltage from a higher voltage pullup rail.

LM25145 Sequential_startup_nvsat9.gif Figure 34. Master-Slave Sequencing Implementation Using PGOOD and EN/UVLO

When the FB voltage exceeds 94% of the internal reference VREF, the internal PGOOD switch turns off and PGOOD can be pulled high by the external pullup. If the FB voltage falls below 92% of VREF, the internal PGOOD switch turns on, and PGOOD is pulled low to indicate that the output voltage is out of regulation. Similarly, when the FB voltage exceeds 108% of VREF, the internal PGOOD switch turns on, pulling PGOOD low. If the FB voltage subsequently falls below 105% of VREF, the PGOOD switch is turned off and PGOOD is pulled high. PGOOD has a built-in deglitch delay of 25 µs.

8.3.6 Switching Frequency (RT, SYNCIN)

There are two options for setting the switching frequency, FSW, of the LM25145, thus providing a power supply designer with a level of flexibility when choosing external components for various applications. To adjust the frequency, use a resistor from the RT pin to AGND, or synchronize the LM25145 to an external clock signal through the SYNCIN pin.

8.3.6.1 Frequency Adjust

Adjust the LM25145 free-running switching frequency by using a resistor from the RT pin to AGND. The switching frequency range is from 100 kHz to 1 MHz. The frequency set resistance, RRT, is governed by Equation 3. E96 standard-value resistors for common switching frequencies are given in Table 1.

Equation 3. LM25145 q_Rt_nvsai4.gif

Table 1. Frequency Set Resistors

SWITCHING FREQUENCY (kHz) FREQUENCY SET RESISTANCE (kΩ)
100 100
200 49.9
250 40.2
300 33.2
400 24.9
500 20
750 13.3
1000 10

8.3.6.2 Clock Synchronization

Apply an external clock synchronization signal to the LM25145 to synchronize switching in both frequency and phase. Requirements for the external clock SYNC signal are:

  • Clock frequency range: 100 kHz to 1 MHz
  • Clock frequency: –20% to +50% of the free-running frequency set by RRT
  • Clock maximum voltage amplitude: 13 V
  • Clock minimum pulse width: 50 ns

LM25145 LM25145_SYNCIN_waveform_nvsat9.gif Figure 35. Typical 400-kHz SYNCIN and SW Voltage Waveforms

Figure 35 shows a clock signal at 400 kHz and the corresponding SW node waveform (VIN = 24 V, VOUT = 5 V, free-running frequency = 280 kHz). The SW voltage waveform is synchronized with respect to the rising edge of SYNCIN. The rising edge of the SW voltage is phase delayed relative to SYNCIN by approximately 100 ns.

8.3.7 Configurable Soft-Start (SS/TRK)

After the EN/UVLO pin exceeds its rising threshold of 1.2 V, the LM25145 begins charging the output to the DC level dictated by the feedback resistor network. The LM25145 features an adjustable soft-start (set by a capacitor from the SS/TRK pin to GND) that determines the charging time of the output. A 10-µA current source charges this soft-start capacitor. Soft-start limits inrush current as a result of high output capacitance to avoid an overcurrent condition. Stress on the input supply rail is also reduced. The soft-start time, tSS, for the output voltage to ramp to its nominal level is set by Equation 4.

Equation 4. LM25145 q_Css_eqn_nvsai4.gif

where

  • CSS is the soft-start capacitance
  • VREF is the 0.8-V reference
  • ISS is the 10-µA current sourced from the SS/TRK pin.

More simply, calculate CSS using Equation 5.

Equation 5. LM25145 q_Css_nvsai4.gif

The SS/TRK pin is internally clamped to VFB + 115 mV to allow a soft-start recovery from an overload event. The clamp circuit requires a soft-start capacitance greater than 2 nF for stability and has a current limit of approximately 2 mA.

8.3.7.1 Tracking

The SS/TRK pin also doubles as a tracking pin when master-slave power-supply tracking is required. This tracking is achieved by simply dividing down the output voltage of the master with a simple resistor network. Coincident, ratiometric, and offset tracking modes are possible.

If an external voltage source is connected to the SS/TRK pin, the external soft-start capability of the LM25145 is effectively disabled. The regulated output voltage level is reached when the SS/TRACK pin reaches the 0.8-V reference voltage level. It is the responsibility of the system designer to determine if an external soft-start capacitor is required to keep the device from entering current limit during a start-up event. Likewise, the system designer must also be aware of how fast the input supply ramps if the tracking feature is enabled.

LM25145 LM5145_TRACK_waveform_nvsai4.gif Figure 36. Typical Output Voltage Tracking and PGOOD Waveforms

Figure 36 shows a triangular voltage signal directly driving SS/TRK and the corresponding output voltage tracking response. Nominal output voltage here is 5 V, with oscilloscope channel scaling chosen such that the waveforms overlap during tracking. As expected, the PGOOD flag transitions at thresholds of 94% (rising) and 92% (falling) of the nominal output voltage setpoint.

Two practical tracking configurations, ratiometric and coincident, are shown in Figure 37. The most common application is coincident tracking, used in core versus I/O voltage tracking in DSP and FPGA implementations. Coincident tracking forces the master and slave channels to have the same output voltage ramp rate until the slave output reaches its regulated setpoint. Conversely, ratiometric tracking sets the output voltage of the slave to a fraction of the output voltage of the master during start-up.

LM25145 LM25145_tracking2_nvsat9.gif Figure 37. Tracking Implementation With Master, Ratiometric Slave, and Coincident Slave Rails

For coincident tracking, connect the SS/TRK input of the slave regulator to a resistor divider from the output voltage of the master that is the same as the divider used on the FB pin of the slave. In other words, simply select RTRK3 = RFB3 and RTRK4 = RFB4 as shown in . As the master voltage rises, the slave voltage rises identically (aside from the 80-mV offset from SS/TRK to FB when VFB is below 0.8 V). Eventually, the slave voltage reaches its regulation voltage, at which point the internal reference takes over the regulation while the SS/TRK input continues to 115 mV above FB, and no longer controls the output voltage.

In all cases, to ensure that the output voltage accuracy is not compromised by the SS/TRK voltage being too close to the 0.8-V reference voltage, the final value of the SS/TRK voltage of the slave should be at least 100 mV above FB.

8.3.8 Voltage-Mode Control (COMP)

The LM25145 incorporates a voltage-mode control loop implementation with input voltage feedforward to eliminate the input voltage dependence of the PWM modulator gain. This configuration allows the controller to maintain stability throughout the entire input voltage operating range and provides for optimal response to input voltage transient disturbances. The constant gain provided by the controller greatly simplifies loop compensation design because the loop characteristics remain constant as the input voltage changes, unlike a buck converter without voltage feedforward. An increase in input voltage is matched by a concomitant increase in ramp voltage amplitude to maintain constant modulator gain. The input voltage feedforward gain, kFF, is 15, equivalent to the input voltage divided by the ramp amplitude, VIN/VRAMP. See Control Loop Compensation for more detail.

8.3.9 Gate Drivers (LO, HO)

The LM25145 gate driver impedances are low enough to perform effectively in high output current applications where large die-size or paralleled MOSFETs with correspondingly large gate charge, QG, are used. Measured at VVCC = 7.5 V, the low-side driver of the LM25145 has a low impedance pulldown path of 0.9 Ω to minimize the effect of dv/dt induced turnon, particularly with low gate-threshold voltage MOSFETs. Similarly, the high-side driver has 1.5-Ω and 0.9-Ω pullup and pulldown impedances, respectively, for faster switching transition times, lower switching loss, and greater efficiency.

The high-side gate driver works in conjunction with an integrated bootstrap diode and external bootstrap capacitor, CBST. When the low-side MOSFET conducts, the SW voltage is approximately at 0 V and CBST is charged from VCC through the integrated boot diode. Connect a 0.1-μF or larger ceramic capacitor close to the BST and SW pins.

Furthermore, there is a proprietary adaptive dead-time control on both switching edges to prevent shoot-through and cross-conduction, minimize body diode conduction time, and reduce body diode reverse recovery losses.

8.3.10 Current Sensing and Overcurrent Protection (ILIM)

The LM25145 implements a lossless current sense scheme designed to limit the inductor current during an overload or short-circuit condition. Figure 38 portrays the popular current sense method using the on-state resistance of the low-side MOSFET. Meanwhile, Figure 39 shows an alternative implementation with current shunt resistor, RS. The LM25145 senses the inductor current during the PWM off-time (when LO is high).

LM25145 Rdson_current_sense_nvsai4.gif Figure 38. MOSFET RDS(on) Current Sensing
LM25145 Shunt_current_sense_nvsai4.gif Figure 39. Shunt Resistor Current Sensing

The ILIM pin of the LM25145 sources a reference current that flows in an external resistor, designated RILIM, to program of the current limit threshold. A current limit comparator on the ILIM pin prevents further SW pulses if the ILIM pin voltage goes below GND. Figure 40 shows the implementation.

Resistor RILIM is tied to SW to use the RDS(on) of the low-side MOSFET as a sensing element (termed RDS-ON mode). Alternatively, RILIM is tied to a shunt resistor connected at the source of the low-side MOSFET (termed RSENSE mode). The LM25145 detects the appropriate mode at start-up and sets the source current amplitude and temperature coefficient (TC) accordingly.

The ILIM current with RDS-ON sensing is 200 µA at 27°C junction temperature and incorporates a TC of +4500 ppm/°C to generally track the RDS(on) temperature variation of the low-side MOSFET. Conversely, the ILIM current is a constant 100 µA in RSENSE mode. This controls the valley of the inductor current during a steady-state overload at the output. Depending on the chosen mode, select the resistance of RILIM using Equation 6.

Equation 6. LM25145 q_Rilim2_nvsai4.gif

where

  • ΔIL is the peak-to-peak inductor ripple current
  • RDS(on)Q2 is the on-state resistance of the low-side MOSFET
  • IRDSON is the ILIM pin current in RDS-ON mode
  • RS is the resistance of the current-sensing shunt element, and
  • IRS is the ILIM pin current in RSENSE mode.

Given the large voltage swings of ILIM in RDS-ON mode, a capacitor designated CILIM connected from ILIM to PGND is essential to the operation of the valley current limit circuit. Choose this capacitance such that the time constant RILIM · CILIM is approximately 6 ns.

LM25145 LM5145_OCP_schematic_nvsai4.gif Figure 40. OCP Setpoint Defined by Current Source IRDSON and Resistor RILIM in RDS-ON Mode

Note that current sensing with a shunt component is typically implemented at lower output current levels to provide accurate overcurrent protection. Burdened by the unavoidable efficiency penalty, PCB layout, and additional cost implications, this configuration is not usually implemented in high-current applications (except where OCP setpoint accuracy and stability over the operating temperature range are critical specifications).

8.3.11 OCP Duty Cycle Limiter

LM25145 LM5145_duty_cycle_limit_waveforms_nvsai4.gif Figure 41. OCP Duty Cycle Limiting Waveforms

In addition to valley current limiting, the LM25145 uses a proprietary duty-cycle limiter circuit to reduce the PWM on-time during an overcurrent condition. As shown in Figure 40, an auxiliary PWM comparator along with a modulated CLAMP voltage limits how quickly the on-time increases in response to a large step in the COMP voltage that typically occurs with a voltage-mode control loop architecture.

As depicted in Figure 41, the CLAMP voltage, VCLAMP, is normally regulated above the COMP voltage to provide adequate headroom during a response to a load-on transient. If the COMP voltage rises quickly during an overloaded or shorted output condition, the on-time pulse terminates thereby limiting the on-time and peak inductor current. Moreover, the CLAMP voltage is reduced if additional valley current limit events occur, further reducing the average output current.

If the overcurrent condition exists for 128 continuous clock cycles, a hiccup event is triggered and SS is pulled low for 8192 clock cycles before a soft-start sequence is initiated.

8.4 Device Functional Modes

8.4.1 Shutdown Mode

The EN/UVLO pin provides ON / OFF control for the LM25145. When the EN/UVLO voltage is below 0.37 V (typical), the device is in shutdown mode. Both the internal bias supply LDO and the switching regulator are off. The quiescent current in shutdown mode drops to 13.5 μA (typical) at VIN = 24 V. The LM25145 also includes undervoltage protection of the internal bias LDO. If the internal bias supply voltage is below its UVLO threshold level, the switching regulator remains off.

8.4.2 Standby Mode

The internal bias supply LDO has a lower enable threshold than the switching regulator. When the EN/UVLO voltage exceeds 0.42 V (typical) and is below the precision enable threshold (1.2 V typically), the internal LDO is on and regulating. Switching action and output voltage regulation are disabled in standby mode.

8.4.3 Active Mode

The LM25145 is in active mode when the VCC voltage is above its rising UVLO threshold of 5 V and the EN/UVLO voltage is above the precision EN threshold of 1.2 V. The simplest way to enable the LM25145 is to tie EN/UVLO to VIN. This allows self start-up of the LM25145 when the input voltage exceeds the VCC threshold plus the LDO dropout voltage from VIN to VCC.

8.4.4 Diode Emulation Mode

The LM25145 provides a diode emulation feature that can be enabled to prevent reverse (drain-to-source) current flow in the low-side MOSFET. When configured for diode emulation, the low-side MOSFET is switched off when reverse current flow is detected by sensing of the SW voltage using a zero-cross comparator. The benefit of this configuration is lower power loss at no-load and light-load conditions, the disadvantage being slower light-load transient response.

The diode emulation feature is configured with the SYNCIN pin. To enable diode emulation and thus achieve discontinuous conduction mode (DCM) operation at light loads, connect the SYNCIN pin to AGND or leave SYNCIN floating. If forced PWM (FPWM) continuous conduction mode (CCM) operation is desired, tie SYNCIN to VCC either directly or using a pullup resistor. Note that diode emulation mode is automatically engaged to prevent reverse current flow during a prebias start-up. A gradual change from DCM to CCM operation provides monotonic start-up performance.

8.4.5 Thermal Shutdown

The LM25145 includes an internal junction temperature monitor. If the temperature exceeds 175°C (typical), thermal shutdown occurs.

When entering thermal shutdown, the device:

  1. Turns off the low-side and high-side MOSFETs;
  2. Pulls SS/TRK and PGOOD low;
  3. Initiates a soft-start sequence when the die temperature decreases by the thermal shutdown hysteresis of 20°C (typical).
This is a non-latching protection, and, as such, the device will cycle into and out of thermal shutdown if the fault persists.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 Design and Implementation

To expedite the process of designing of a LM25145-based regulator for a given application, please use the LM25145 Quickstart Calculator available as a free download, as well as numerous LM25145 reference designs populated in TI Designs™ reference design library, or the designs provided in Typical Applications. The LM25145 is also WEBENCH® Designer enabled.

9.1.2 Power Train Components

Comprehensive knowledge and understanding of the power train components are key to successfully completing a synchronous buck regulator design.

9.1.2.1 Inductor

For most applications, choose an inductance such that the inductor ripple current, ΔIL, is between 30% and 40% of the maximum DC output current at nominal input voltage. Choose the inductance using Equation 7 based on a peak inductor current given by Equation 8.

Equation 7. LM25145 q_Lf_nvsai4.gif
Equation 8. LM25145 q_ILpeak_nvsai4.gif

Check the inductor datasheet to ensure that the saturation current of the inductor is well above the peak inductor current of a particular design. Ferrite designs have very low core loss and are preferred at high switching frequencies, so design goals can then concentrate on copper loss and preventing saturation. Low inductor core loss is evidenced by reduced no-load input current and higher light-load efficiency. However, ferrite core materials exhibit a hard saturation characteristic and the inductance collapses abruptly when the saturation current is exceeded. This results in an abrupt increase in inductor ripple current, higher output voltage ripple, not to mention reduced efficiency and compromised reliability. Note that the saturation current of an inductor generally deceases as its core temperature increases. Of course, accurate overcurrent protection is key to avoiding inductor saturation.

9.1.2.2 Output Capacitors

Ordinarily, the output capacitor energy store of the regulator combined with the control loop response are prescribed to maintain the integrity of the output voltage within the dynamic (transient) tolerance specifications. The usual boundaries restricting the output capacitor in power management applications are driven by finite available PCB area, component footprint and profile, and cost. The capacitor parasitics—equivalent series resistance (ESR) and equivalent series inductance (ESL)—take greater precedence in shaping the load transient response of the regulator as the load step amplitude and slew rate increase.

The output capacitor, COUT, filters the inductor ripple current and provides a reservoir of charge for step-load transient events. Typically, ceramic capacitors provide extremely low ESR to reduce the output voltage ripple and noise spikes, while tantalum and electrolytic capacitors provide a large bulk capacitance in a relatively compact footprint for transient loading events.

Based on the static specification of peak-to-peak output voltage ripple denoted by ΔVOUT, choose an output capacitance that is larger than that given by Equation 9.

Equation 9. LM25145 q_Co_nvsai4.gif

Figure 42 conceptually illustrates the relevant current waveforms during both load step-up and step-down transitions. As shown, the large-signal slew rate of the inductor current is limited as the inductor current ramps to match the new load-current level following a load transient. This slew-rate limiting exacerbates the deficit of charge in the output capacitor, which must be replenished as rapidly as possible during and after the load step-up transient. Similarly, during and after a load step-down transient, the slew rate limiting of the inductor current adds to the surplus of charge in the output capacitor that must be depleted as quickly as possible.

LM25145 Load_transient_plot_nvsai4.gif Figure 42. Load Transient Response Representation Showing COUT Charge Surplus or Deficit

In a typical regulator application of 24-V input to low output voltage (for example, 5 V), it should be recognized that the load-off transient represents worst-case. In that case, the steady-state duty cycle is approximately 10% and the large-signal inductor current slew rate when the duty cycle collapses to zero is approximately –VOUT/L. Compared to a load-on transient, the inductor current takes much longer to transition to the required level. The surplus of charge in the output capacitor causes the output voltage to significantly overshoot. In fact, to deplete this excess charge from the output capacitor as quickly as possible, the inductor current must ramp below its nominal level following the load step. In this scenario, a large output capacitance can be advantageously employed to absorb the excess charge and limit the voltage overshoot.

To meet the dynamic specification of output voltage overshoot during such a load-off transient (denoted as ΔVOVERSHOOT with step reduction in output current given by ΔIOUT), the output capacitance should be larger than

Equation 10. LM25145 q_Co_tran_nvsai4.gif

The ESR of a capacitor is provided in the manufacturer’s data sheet either explicitly as a specification or implicitly in the impedance vs. frequency curve. Depending on type, size and construction, electrolytic capacitors have significant ESR, 5 mΩ and above, and relatively large ESL, 5 nH to 20 nH. PCB traces contribute some parasitic resistance and inductance as well. Ceramic output capacitors, on the other hand, have low ESR and ESL contributions at the switching frequency, and the capacitive impedance component dominates. However, depending on package and voltage rating of the ceramic capacitor, the effective capacitance can drop quite significantly with applied DC voltage and operating temperature.

Ignoring the ESR term in Equation 9 gives a quick estimation of the minimum ceramic capacitance necessary to meet the output ripple specification. One to four 47-µF, 10-V, X7R capacitors in 1206 or 1210 footprint is a common choice. Use Equation 10 to determine if additional capacitance is necessary to meet the load-off transient overshoot specification.

A composite implementation of ceramic and electrolytic capacitors highlights the rationale for paralleling capacitors of dissimilar chemistries yet complementary performance. The frequency response of each capacitor is accretive in that each capacitor provides desirable performance over a certain portion of the frequency range. While the ceramic provides excellent mid- and high-frequency decoupling characteristics with its low ESR and ESL to minimize the switching frequency output ripple, the electrolytic device with its large bulk capacitance provides low-frequency energy storage to cope with load transient demands.

9.1.2.3 Input Capacitors

Input capacitors are necessary to limit the input ripple voltage to the buck power stage due to switching-frequency AC currents. TI recommends using X5R or X7R dielectric ceramic capacitors to provide low impedance and high RMS current rating over a wide temperature range. To minimize the parasitic inductance in the switching loop, position the input capacitors as close as possible to the drain of the high-side MOSFET and the source of the low-side MOSFET. The input capacitor RMS current is given by Equation 11.

Equation 11. LM25145 q_ICinrms_nvsai4.gif

The highest input capacitor RMS current occurs at D = 0.5, at which point the RMS current rating of the capacitors should be greater than half the output current.

Ideally, the DC component of input current is provided by the input voltage source and the AC component by the input filter capacitors. Neglecting inductor ripple current, the input capacitors source current of amplitude (IOUT − IIN) during the D interval and sinks IIN during the 1−D interval. Thus, the input capacitors conduct a square-wave current of peak-to-peak amplitude equal to the output current. It follows that the resultant capacitive component of AC ripple voltage is a triangular waveform. Together with the ESR-related ripple component, the peak-to-peak ripple voltage amplitude is given by Equation 12.

Equation 12. LM25145 q_Vinripple_nvsai4.gif

The input capacitance required for a particular load current, based on an input voltage ripple specification of ΔVIN, is given by Equation 13.

Equation 13. LM25145 q_Cin_nvsai4.gif

Low-ESR ceramic capacitors can be placed in parallel with higher valued bulk capacitance to provide optimized input filtering for the regulator and damping to mitigate the effects of input parasitic inductance resonating with high-Q ceramics. One bulk capacitor of sufficiently high current rating and two or three 2.2-μF 100-V X7R ceramic decoupling capacitors are usually sufficient. Select the input bulk capacitor based on its ripple current rating and operating temperature.

9.1.2.4 Power MOSFETs

The choice of power MOSFETs has significant impact on DC-DC regulator performance. A MOSFET with low on-state resistance, RDS(on), reduces conduction loss, whereas low parasitic capacitances enable faster transition times and reduced switching loss. Normally, the lower the RDS(on) of a MOSFET, the higher the gate charge and output charge (QG and QOSS respectively), and vice versa. As a result, the product RDS(on) × QG is commonly specified as a MOSFET figure-of-merit. Low thermal resistance ensures that the MOSFET power dissipation does not result in excessive MOSFET die temperature.

The main parameters affecting power MOSFET selection in an LM25145 application are as follows:

  • RDS(on) at VGS = 7.5 V;
  • Drain-source voltage rating, BVDSS, typically 30 V, 40 V or 60 V, depending on maximum input voltage;
  • Gate charge parameters at VGS = 7.5 V;
  • Output charge, QOSS, at the relevant input voltage;
  • Body diode reverse recovery charge, QRR;
  • Gate threshold voltage, VGS(th), derived from the plateau in the QG vs. VGS plot in the MOSFET data sheet. With a MOSFET Miller plateau voltage typically in the range of 3 V to 5 V, the 7.5-V gate drive amplitude of the LM25145 provides an adequately-enhanced MOSFET when on and a margin against Cdv/dt shoot-through when off.

The MOSFET-related power losses are summarized by the equations presented in Table 2, where suffixes 1 and 2 represent high-side and low-side MOSFET parameters, respectively. While the influence of inductor ripple current is considered, second-order loss modes, such as those related to parasitic inductances and SW node ringing, are not included. Consult the LM25145 Quickstart Calculator to assist with power loss calculations.

Table 2. Buck Regulator MOSFET Power Losses

POWER LOSS MODE HIGH-SIDE MOSFET LOW-SIDE MOSFET
MOSFET Conduction(2)(3) LM25145 q_Q1_condloss_nvsai4.gif LM25145 q_Q2_condloss_nvsai4.gif
MOSFET Switching LM25145 q_Psw_nvsai4.gif Negligible
MOSFET Gate Drive(1) LM25145 q_Q1_Qg_nvsai4.gif LM25145 q_Q2_Qg_nvsai4.gif
MOSFET Output Charge(4) LM25145 q_Pqoss_nvsai4.gif
Body Diode
Conduction
N/A LM25145 q_Pbody_nvsai4.gif
Body Diode
Reverse Recovery(5)
LM25145 q_Prr_nvsai4.gif
(1) Gate drive loss is apportioned based on the internal gate resistance of the MOSFET, externally-added series gate resistance and the relevant driver resistance of the LM25145.
(2) MOSFET RDS(on) has a positive temperature coefficient of approximately 4500 ppm/°C. The MOSFET junction temperature, TJ, and its rise over ambient temperature is dependent upon the device total power dissipation and its thermal impedance.
(3) D' = 1–D is the duty cycle complement.
(4) MOSFET output capacitances, Coss1 and Coss2, are highly non-linear with voltage. These capacitances are charged losslessly by the inductor current at high-side MOSFET turn-off. During turn-on, however, a current flows from the input to charge the output capacitance of the low-side MOSFET. Eoss1, the energy of Coss1, is dissipated at turn-on, but this is offset by the stored energy Eoss2 on Coss2.
(5) MOSFET body diode reverse recovery charge, QRR, depends on many parameters, particularly forward current, current transition speed and temperature.

The high-side (control) MOSFET carries the inductor current during the PWM on-time (or D interval) and typically incurs most of the switching losses. It is therefore imperative to choose a high-side MOSFET that balances conduction and switching loss contributions. The total power dissipation in the high-side MOSFET is the sum of the losses due to conduction, switching (voltage-current overlap), output charge, and typically two-thirds of the net loss attributed to body diode reverse recovery.

The low-side (synchronous) MOSFET carries the inductor current when the high-side MOSFET is off (or 1–D interval). The low-side MOSFET switching loss is negligible as it is switched at zero voltage – current just commutates from the channel to the body diode or vice versa during the transition dead-times. The LM25145, with its adaptive gate drive timing, minimizes body diode conduction losses when both MOSFETs are off. Such losses scale directly with switching frequency.

In high step-down ratio applications, the low-side MOSFET carries the current for a large portion of the switching period. Therefore, to attain high efficiency, it is critical to optimize the low-side MOSFET for low RDS(on). In cases where the conduction loss is too high or the target RDS(on) is lower than available in a single MOSFET, connect two low-side MOSFETs in parallel. The total power dissipation of the low-side MOSFET is the sum of the losses due to channel conduction, body diode conduction, and typically one-third of the net loss attributed to body diode reverse recovery. The LM25145 is well suited to drive TI's comprehensive portfolio of NexFET™ power MOSFETs.

9.1.3 Control Loop Compensation

The poles and zeros inherent to the power stage and compensator are respectively illustrated by red and blue dashed rings in the schematic embedded in Table 3.

The compensation network typically employed with voltage-mode control is a Type-III circuit with three poles and two zeros. One compensator pole is located at the origin to realize high DC gain. The normal compensation strategy uses two compensator zeros to counteract the LC double pole, one compensator pole located to nullify the output capacitor ESR zero, with the remaining compensator pole located at one-half switching frequency to attenuate high frequency noise. The resistor divider network to FB determines the desired output voltage. Note that the lower feedback resistor, RFB2, has no impact on the control loop from an AC standpoint because the FB node is the input to an error amplifier and is effectively at AC ground. Hence, the control loop is designed irrespective of output voltage level. The proviso here is the necessary output capacitance derating with bias voltage and temperature.

Table 3. Buck Regulator Poles and Zeros(1)(2)

LM25145 Comp_network_nvsai4.gif
POWER STAGE POLES POWER STAGE ZEROS COMPENSATOR POLES COMPENSATOR ZEROS
LM25145 q_omega_nvsai4.gif LM25145 q_omegaESR_nvsai4.gif LM25145 q_p1_nvsai4.gif LM25145 q_z1_nvsai4.gif
LM25145 q_omegaL_nvsai4.gif LM25145 q_p2_nvsai4.gif LM25145 q_z2_nvsai4.gif
(1) RESR represents the ESR of the output capacitor COUT.
(2) RDAMP = D · RDS(on)high-side + (1–D) · RDS(on) low-side + RDCR, shown as a lumped element in the schematic, represents the effective series damping resistance.

The small-signal open-loop response of a buck regulator is the product of modulator, power train and compensator transfer functions. The power stage transfer function can be represented as a complex pole pair associated with the output LC filter and a zero related to the ESR of the output capacitor. The DC (and low frequency) gain of the modulator and power stage is VIN/VRAMP. The gain from COMP to the average voltage at the input of the LC filter is held essentially constant by the PWM line feedforward feature of the LM25145 (15 V/V or 23.5 dB).

Complete expressions for small-signal frequency analysis are presented in Table 4. The transfer functions are denoted in normalized form. While the loop gain is of primary importance, a regulator is not specified directly by its loop gain but by its performance related characteristics, namely closed-loop output impedance and audio susceptibility.

Table 4. Buck Regulator Small-Signal Analysis

TRANSFER FUNCTION EXPRESSION
Open-loop transfer function LM25145 q_Tv_nvsai4.gif
Duty-cycle-to-output transfer function LM25145 q_Gvd_nvs896.gif
Compensator transfer function(1) LM25145 q_Gc_nvs896.gif
Modulator transfer function LM25145 q_Fm_nvs896.gif
(1) Kmid = RC1/RFB1 is the mid-band gain of the compensator. By expressing one of the compensator zeros in inverted zero format, the mid-band gain is denoted explicitly.

An illustration of the open-loop response gain and phase is given in Figure 43. The poles and zeros of the system are marked with x and o symbols, respectively, and a + symbol indicates the crossover frequency. When plotted on a log (dB) scale, the open-loop gain is effectively the sum of the individual gain components from the modulator, power stage, and compensator (see Figure 44). The open-loop response of the system is measured experimentally by breaking the loop, injecting a variable-frequency oscillator signal and recording the ensuing frequency response using a network analyzer setup.

LM25145 bodeplot_nvs896.gif Figure 43. Typical Buck Regulator Loop Gain and Phase With Voltage-Mode Control

If the pole located at ωp1 cancels the zero located at ωESR and the pole at ωp2 is located well above crossover, the expression for the loop gain, Tv(s) in Table 4, can be manipulated to yield the simplified expression given in Equation 14.

Equation 14. LM25145 q_Tv_simplified_nvsai4.gif

Essentially, a multi-order system is reduced to a single-order approximation by judicious choice of compensator components. A simple solution for the crossover frequency, denoted as fc in Figure 43, with Type-III voltage-mode compensation is derived as shown in Equation 15 and Equation 16.

Equation 15. LM25145 q_fc_nvsai4.gif
Equation 16. LM25145 q_Kmid_nvsai4.gif
LM25145 gain_components_nvs896.gif Figure 44. Buck Regulator Constituent Gain Components

The loop crossover frequency is usually selected between one-tenth to one-fifth of switching frequency. Inserting an appropriate crossover frequency into Equation 15 gives a target for the mid-band gain of the compensator, Kmid. Given an initial value for RFB1, RFB2 is then selected based on the desired output voltage. Values for RC1, RC2, CC1, CC2 and CC3 are calculated from the design expressions listed in Table 5, with the premise that the compensator poles and zeros are set as follows: ωz1 = 0.5·ωo, ωz2 = ωo, ωp1 = ωESR, ωp2 = ωSW/2.

Table 5. Compensation Component Selection

RESISTORS CAPACITORS
LM25145 q_Rfb2_nvsai4.gif LM25145 q_Cc1_nvsai4.gif
LM25145 q_Rc1_nvsai4.gif LM25145 q_Cc2_nvsai4.gif
LM25145 q_Rc2_nvsai4.gif LM25145 q_Cc3_nvsai4.gif

Referring to the bode plot in Figure 43, the phase margin, indicated as φM, is the difference between the loop phase and –180° at crossover. A target of 50° to 70° for this parameter is considered ideal. Additional phase boost is dialed in by locating the compensator zeros at a frequency lower than the LC double pole (hence why CC1 is scaled by a factor of 2 above). This helps mitigate the phase dip associated with the LC filter, particularly at light loads when the Q-factor is higher and the phase dip becomes especially prominent. The ramification of low phase in the frequency domain is an under-damped transient response in the time domain.

The power supply designer now has all the necessary expressions to optimally position the loop crossover frequency while maintaining adequate phase margin over the required line, load and temperature operating ranges. The LM25145 Quickstart Calculator is available to expedite these calculations and to adjust the bode plot as needed.

9.1.4 EMI Filter Design

Switching regulators exhibit negative input impedance, which is lowest at the minimum input voltage. An underdamped LC filter exhibits a high output impedance at the resonant frequency of the filter. For stability, the filter output impedance must be less than the absolute value of the converter input impedance.

Equation 17. LM25145 q_Zin_nvsai4.gif

The EMI filter design steps are as follows:

  • Calculate the required attenuation of the EMI filter at the switching frequency, where CIN represents the existing capacitance at the input of the switching converter;
  • Input filter inductor LIN is usually selected between 1 μH and 10 μH, but it can be lower to reduce losses in a high current design;
  • Calculate input filter capacitor CF.

LM25145 LM5145_InputFilter_nvsai4.gif Figure 45. Buck Regulator With π-Stage EMI Filter

By calculating the first harmonic current from the Fourier series of the input current waveform and multiplying it by the input impedance (the impedance is defined by the existing input capacitor CIN), a formula is derived to obtain the required attenuation as shown by Equation 18.

Equation 18. LM25145 q_Attn_nvsai4.gif

VMAX is the allowed dBμV noise level for the applicable EMI standard, for example EN55022 Class B. CIN is the existing input capacitance of the buck regulator, DMAX is the maximum duty cycle, and IPEAK is the peak inductor current. For filter design purposes, the current at the input can be modeled as a square-wave. Determine the EMI filter capacitance CF from Equation 19.

Equation 19. LM25145 q_Cf_nvsai4.gif

Adding an input filter to a switching regulator modifies the control-to-output transfer function. The output impedance of the filter must be sufficiently small such that the input filter does not significantly affect the loop gain of the buck converter. The impedance peaks at the filter resonant frequency. The resonant frequency of the filter is given by Equation 20.

Equation 20. LM25145 q_fres_nvsai4.gif

The purpose of RD is to reduce the peak output impedance of the filter at the resonant frequency. Capacitor CD blocks the DC component of the input voltage to avoid excessive power dissipation in RD. Capacitor CD should have lower impedance than RD at the resonant frequency with a capacitance value greater than that of the input capacitor CIN. This prevents CIN from interfering with the cutoff frequency of the main filter. Added damping is needed when the output impedance of the filter is high at the resonant frequency (Q of filter formed by LIN and CIN is too high). An electrolytic capacitor CD can be used for damping with a value given by Equation 21.

Equation 21. LM25145 q_Cd_nvsai4.gif

Select the damping resistor RD using Equation 22.

Equation 22. LM25145 q_Rd_nvsai4.gif

9.2 Typical Applications

LM25145 TIDesignsLogo.png
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation and test results of an LM25145-powered implementation, please refer to TI Designs reference design library.

9.2.1 Design 1 – 20-A High-Efficiency Synchronous Buck Regulator for Telecom Power Applications

Figure 46 shows the schematic diagram of a 5-V, 20-A buck regulator with a switching frequency of 500 kHz. In this example, the target full-load efficiency is 94% at a nominal input voltage of 24 V that ranges from 6.5 V to as high as 32 V. The switching frequency is set by means of a synchronization input signal at 500 kHz, and the free-running switching frequency (in the event that the synchronization signal is removed) is set at 450 kHz by resistor RRT. In terms of control loop performance, the target loop crossover frequency is 70 kHz with a phase margin greater than 50°. The output voltage soft-start time is 4 ms.

LM25145 LM25145_schematic_design1_nvsat9.gif Figure 46. Application Circuit #1 With LM25145 24-V to 5-V, 20-A Buck Regulator at 500 kHz

NOTE

This and subsequent design examples are provided herein to showcase the LM25145 controller in several different applications. Depending on the source impedance of the input supply bus, an electrolytic capacitor may be required at the input to ensure stability, particularly at low input voltage and high output current operating conditions. See Power Supply Recommendations for more detail.

9.2.1.1 Design Requirements

The intended input, output, and performance-related parameters pertinent to this design example are shown in Table 6.

Table 6. Design Parameters

DESIGN PARAMETER VALUE
Input voltage range (steady-state) 6.5 V to 32 V
Input transient voltage (peak) 42 V
Output voltage and current 5 V, 20 A
Input voltage UVLO thresholds 6.5 V on, 6 V off
Switching frequency (SYNC in) 500 kHz
Output voltage regulation ±1%
Load transient peak voltage deviation < 100 mV

9.2.1.2 Detailed Design Procedure

The design procedure for an LM25145-based regulator for a given application is streamlined by using the LM25145 Quickstart Calculator available as a free download, or by availing of TI's WEBENCH® Power Designer.

The selected buck converter powertrain components are cited in Table 7, and many of the components are available from multiple vendors. The MOSFETs in particular are chosen for both lowest conduction and switching power loss, as discussed in detail in Power MOSFETs.

The current limit setpoint in this design is set at 26 A based on the resistor RILIM and the 2-mΩ RDS(on) of the low-side MOSFET (typical at TJ = 25°C and VGS = 7.5 V). This design uses a low-DCR, metal-powder inductor and an all-ceramic output capacitor implementation.

Table 7. List of Materials for Design 1

REFERENCE DESIGNATOR QTY SPECIFICATION MANUFACTURER PART NUMBER
CIN 7 10 µF, 50 V, X7R, 1210, ceramic TDK C3225X7R1H106M
Murata GRM32ER71H106KA12L
AVX 12105C106KAT2A
Kemet C1210C106K5RACTU
Taiyo Yuden UMK325AB7106MM-T
COUT 7 47 µF, 10 V, X7R, 1210, ceramic Murata GRM32ER71A476KE15L
Taiyo Yuden LMK325B7476MM-TR
AVX 1210ZC476KAT2A
Kemet C1210C476M8RAC7800
LF 1 1 µH, 2.3 mΩ, 40 A, 11.15 × 10 × 3.8 mm Cyntec CMLE104T-1R0MS2R307
1.2 µH, 1.8 mΩ, 25 A, 10.2 × 10.2 × 4.7 mm Würth Electronik WE HCI 744325120
1 µH, 2.3 mΩ, 38 A, 10.9 × 10 × 5.0 mm Panasonic ETQP5M1R0YLC
1 µH, 2.2 mΩ, 36 A, 10.5 × 10 × 6.5 mm TDK SPM10065VT-D
Q1 1 40 V, 3.7 mΩ, high-side MOSFET, SON 5 × 6 Texas Instruments CSD18503Q5A
Q2 1 40 V, 2 mΩ, low-side MOSFET, SON 5 × 6 Texas Instruments CSD18511Q5A
U1 1 Wide VIN synchronous buck controller Texas Instruments LM25145RGYR

9.2.1.3 Custom Design With WEBENCH® Tools

Click here to create a custom design using the LM25145 device with the WEBENCH® Power Designer.

  1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.
  2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
  3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

  • Run electrical simulations to see important waveforms and circuit performance
  • Run thermal simulations to understand board thermal performance
  • Export customized schematic and layout into popular CAD formats
  • Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

9.2.1.4 Application Curves

LM25145 D050_snvsat9.gif
SYNCIN tied to VCC
Figure 47. Efficiency and Power Loss vs IOUT and VIN, CCM
LM25145 LM25145_5V20A_Startup_waveform_nvsat9.gif
VIN step to 24 V 0.25-Ω Load
Figure 49. Start-Up, 20-A Resistive Load
LM25145 LM25145_5V20A_ENABLE_ON_waveform_nvsat9.gif
VIN = 24 V 0.25-Ω Load
Figure 51. ENABLE ON, 20-A Resistive Load
LM25145 LM25145_5V20A_Load_transient1020_waveform_nvsat9.gif
VIN = 24 V
Figure 53. Load Transient Response, 10 A to 20 A to 10 A
LM25145 LM25145_5V20A_SYNCOUT_waveform_nvsat9.gif
VIN = 24 V IOUT = 0 A
Figure 55. SYNCOUT and SW Node Voltages
LM25145 D051_snvsat9.gif
SYNCIN tied to GND
Figure 48. Efficiency and Power Loss vs IOUT and VIN, DCM
LM25145 LM25145_5V20A_Shutdown_waveform_nvsat9.gif
VIN 24 V to 6 V 0.25-Ω Load
Figure 50. Shutdown Through Input UVLO, 20-A Resistive Load
LM25145 LM25145_5V20A_ENABLE_OFF_waveform_nvsat9.gif
VIN = 24 V 0.25-Ω Load
Figure 52. ENABLE OFF, 20-A Resistive Load
LM25145 LM25145_5V20A_Load_transient020_waveform_nvsat9.gif
VIN = 24 V
Figure 54. Load Transient Response, 0 A to 20 A to 0 A
LM25145 LM25145_5V20A_SWNode_20A_waveform_nvsat9.gif
VIN = 24 V IOUT = 20 A
Figure 56. SW Node Voltage

9.2.2 Design 2 – High Density, 12-V, 8-A Rail With LDO Low-Noise Auxiliary Output for Industrial Applications

Figure 57 shows the schematic diagram of a 425-kHz, 12-V output, 8-A synchronous buck regulator intended for RF power applications.

An auxiliary 10-V, 800-mA rail to power noise-sensitive circuits is available using the LP38798 ultra-low noise LDO as a post-regulator. The internal pullup of the EN pin of the LP38798 facilitates direct connection to the PGOOD of the LM25145 for sequential start-up control.

LM25145 LM25145_schematic_design2_nvsat9.gif Figure 57. Application Circuit #2 With LM25145 24-V to 12-V Synchronous Buck Regulator at 425 kHz

9.2.2.1 Design Requirements

The required input, output, and performance parameters for this application example are shown in Table 8.

Table 8. Design Parameters

DESIGN PARAMETER VALUE
Input voltage range (steady-state) 14.4 V to 36 V
Input transient voltage (peak) 42 V
Output voltage and current 12 V, 8 A
Input UVLO thresholds 14 V on, 13.2 V off
Switching frequency 425 kHz
Output voltage regulation ±1%
Load transient peak voltage deviation, 4-A load step, 1 A/µs < 150 mV

9.2.2.2 Detailed Design Procedure

A high power density, high-efficiency regulator solution is realized by using TI NexFET™ Power MOSFETs, such as CSD18543Q3A (60-V, 8.5-mΩ MOSFET in a SON 3.3-mm × 3.3-mm package), together with a low-DCR inductor and all-ceramic capacitor design. The design occupies 15 mm × 15 mm on a single-sided PCB. The overcurrent (OC) setpoint in this design is set at 11 A based on the resistor RILIM and the 8.5-mΩ RDS(on) of the low-side MOSFET (typical at TJ = 25°C and VGS = 7.5 V). Connecting VCC to either VOUT1 or VOUT2 using a series diode reduces bias power dissipation and improves efficiency, especially at light loads.

The selected buck converter powertrain components are cited in Table 9, including power MOSFETs, buck inductor, input and output capacitors, and ICs. Using the LM25145 Quickstart Calculator, compensation components are selected based on a target loop crossover frequency of 70 kHz and phase margin greater than 55°. The output voltage soft-start time is 4 ms based on the selected soft-start capacitance, CSS, of 47 nF.

Table 9. List of Materials for Design 2

REFERENCE DESIGNATOR QTY SPECIFICATION MANUFACTURER PART NUMBER
CIN 4 10 µF, 50 V, X7R, 1210, ceramic TDK C3225X7R1H106M
Murata GRM32ER71H106KA12L
AVX 12105C106KAT2A
COUT 4 22 µF, 25 V, X7R, 1210, ceramic Murata GRM32ER71E226KE15L
Taiyo Yuden TMK325B7226MM-TR
TDK C3225X7R1E226M
LF 1 5.6 µH, 17 mΩ, 18 A, 10.85 × 10 × 3.8 mm Cyntec CMLS104T-5R6MS
5.6 µH, 20 mΩ, 14 A, 10.85 × 10 × 3.8 mm Delta MPT1040-5R6H1
5.6 µH, 16 mΩ, 12 A, 10.7 × 10 × 4 mm Bourns SRP1040-5R6M
5.6 µH, 19.3 mΩ, 16 A, 11 × 10 × 4 mm Laird MGV10045R6M-10
6.8 µH, 17.5 mΩ, 14 A, 11 × 10 × 3.8 mm Würth Electronik WE-LHMI 74437368068
6.8 µH, 17.9 mΩ, 25 A, 10.5 × 10 × 4 mm TDK SPM10040VT-6R8M-D
6.8 µH, 18.3 mΩ, 12.1 A, 10.7 × 10 × 4 mm Panasonic ETQP4M6R8KVC
Q1, Q2 2 60 V, 8 mΩ, MOSFET, SON 3 × 3 Texas Instruments CSD18543Q3A
U1 1 Wide VIN synchronous buck controller Texas Instruments LM25145RGYR
U2 1 Ultra-low noise and high-PSRR LDO for RF and analog circuits, 4-mm × 4-mm 12-pin WSON Texas Instruments LP38798SD-ADJ

If needed, a 2.2-Ω resistor can be added in series with CBST is used to slow the turn-on transition of the high-side MOSFET, reducing the spike amplitude and ringing of the SW node voltage and minimizing the possibility of Cdv/dt-induced shoot-through of the low-side MOSFET. If needed, place an RC snubber (for example, 2.2 Ω and 100 pF) close to the drain (SW node) and source (PGND) terminals of the low-side MOSFET to further attenuate any SW node voltage overshoot and/or ringing. Please refer to the application note Reduce Buck Converter EMI and Voltage Stress by Minimizing Inductive Parasitics for more detail.

9.2.2.2.1 Application Curves

LM25145 D052_snvsat9.gif
Figure 58. Efficiency vs IOUT and VIN
LM25145 LM25145_12V8A_Startup_waveform_nvsat9.gif
VIN step to 24 V 1.5-Ω Load
Figure 60. Start-Up, 8-A Resistive Load
LM25145 LM5145_12V10A_ENABLE_ON_waveform_nvsai4.gif
VIN = 24 V 1.5-Ω Load
Figure 62. ENABLE ON, 8-A Resistive Load
LM25145 LM25145_12V8A_PreBiasedStartup_waveform_nvsat9.gif
VIN = 24 V IOUT = 0 A
Figure 64. Pre-Biased Start-Up
LM25145 LM25145_12V8A_Load_transient484_waveform_nvsat9.gif
VIN = 24 V
Figure 66. Load Transient Response, 4 A to 8 A to 4 A
LM25145 LM25145_12V8A_LineStepHigh_waveform_nvsat9.gif
IOUT = 8 A
Figure 68. Line Transient Response, 18 V to 36 V
LM25145 LM25145_12V8A_SYNCOUT_waveform_nvsat9.gif
VIN = 24 V IOUT = 4 A
Figure 59. SYNCOUT and SW Node Voltages
LM25145 LM25145_12V8A_Shutdown_waveform_nvsat9.gif
1.5-Ω Load
Figure 61. Shutdown Through Input UVLO, 8-A Resistive Load
LM25145 LM5145_12V10A_ENABLE_OFF_waveform_nvsai4.gif
VIN = 24 V 1.5-Ω Load
Figure 63. ENABLE OFF, 8-A Resistive Load
LM25145 LM25145_12V8A_SWandVOUT_waveform_nvsat9.gif
VIN = 24 V IOUT = 0 A
Figure 65. SW Node and VOUT Ripple
LM25145 LM25145_12V8A_Load_transient080_waveform_nvsat9.gif
VIN = 24 V
Figure 67. Load Transient Response, 0.8 A to 8 A to 0.8 A
LM25145 LM25145_12V8A_LineStepLow_waveform_nvsat9.gif
IOUT = 8 A
Figure 69. Line Transient Response, 36 V to 18 V

9.2.3 Design 3 – Powering a Multicore DSP From a 24-V Rail

LM25145 PowerHouseBanner_nvsat9.gif
For technical solutions, industry trends, and insights for designing and managing power supplies, please refer to TI's Power House blog series.

Figure 70 shows the schematic diagram of a 10-A synchronous buck regulator for a DSP core voltage supply.

LM25145 LM25145_schematic_design3_nvsat9.gif Figure 70. Application Circuit #3 With LM25145 DSP Core Voltage Supply

9.2.3.1 Design Requirements

For this application example, the intended input, output, and performance parameters are listed in Table 10.

Table 10. Design Parameters

DESIGN PARAMETER VALUE
Input voltage range (steady-state) 6 V to 36 V
Input transient voltage (peak) 42 V
Output voltage and current 0.9 V to 1.1 V, 10 A
Output voltage regulation ±1%
Load transient peak voltage deviation, 10-A step < 120 mV
Switching frequency 300 kHz

9.2.3.2 Detailed Design Procedure

The schematic diagram of a 300-kHz, 24-V nominal input, 10-A regulator powering a KeyStone™ DSP is given in Figure 70. This high step-down ratio design leverages the low 40-ns minimum controllable on-time of the LM25145 controller to achieve stable, efficient operation at very low duty cycles. 60-V power MOSFETs, such as TI's CSD18543Q3A and CSD18531Q5A NexFET devices, are used together with a low-DCR, metal-powder inductor, and ceramic output capacitor implementation. An external rail between 8 V and 13 V powers VCC to minimize bias power dissipation, and a blocking diode connected to the VIN pin is used as recommended in Figure 32.

The important components for this design are listed in Table 11.

Table 11. List of Materials for Design 3

REFERENCE DESIGNATOR QTY SPECIFICATION MANUFACTURER PART NUMBER
CIN 3 10 µF, 50 V, X7R, 1210, ceramic TDK C3225X7R1H106M
Murata GRM32ER71H106KA12L
AVX 12105C106KAT2A
COUT 4 100 µF, 6.3V, X7S, 1210, ceramic Murata GRM32EC70J107ME15L
Taiyo Yuden JMK325AC7107MM-P
100 µF, 6.3V, X5R, 1206, ceramic Murata GRM31CR60J107ME39K
TDK C3216X5R0J107M
Würth Electronik 885012108005
LF 1 1 µH, 5.6 mΩ, 16 A, 6.95 × 6.6 × 2.8 mm Cyntec CMLE063T-1R0MS
1 µH, 5.5 mΩ, 12 A, 6.65 × 6.45 × 3.0 mm Würth Electronik WE XHMI 74439344010
1 µH, 7.9 mΩ, 16 A, 6.5 × 6.0 × 3.0 mm Panasonic ETQP3M1R0YFN
1 µH, 6.95 mΩ, 18 A, 6.76 × 6.56 × 3.1 mm Coilcraft XEL6030-102ME
Q1 1 60 V, 8.5 mΩ, high-side MOSFET, SON 3 × 3 Texas Instruments CSD18543Q3A
Q2 1 60 V, 4 mΩ, low-side MOSFET, SON 5 × 6 Texas Instruments CSD18531Q5A
U1 1 Wide VIN synchronous buck controller Texas Instruments LM25145RGYR
U2 1 6- or 4-bit VID voltage programmer, WSON-10 Texas Instruments LM10011SD
U3 1 KeyStone™ DSP Texas Instruments TMS320C667x
(1) Refer to Hardware Design Guide for Keystone I Devices (SPRAB12) and How to Optimize Your DSP Power Budget for further detail.

The regulator output current requirements are dependent upon the baseline and activity power consumption of the DSP in a real-use case. While baseline power is highly dependent on voltage, temperature and DSP frequency, activity power relates to dynamic core utilization, DDR3 memory access, peripherals, and so on. To this end, the IDAC_OUT pin of the LM10011 connects to the LM25145 FB pin to allow continuous optimization of the core voltage. The SmartReflex-enabled DSP provides 6-bit information using the VCNTL open-drain I/Os to command the output voltage setpoint with 6.4-mV step resolution.(1)

9.2.3.3 Application Curves

LM25145 D043_snvsai4.gif
VOUT = 1.1 V VAUX = 8 V
Figure 71. Efficiency vs IOUT and VIN
LM25145 LM5145_1V10A_ENABLE_waveform_nvsai4.gif
VIN = 24 V 0.11-Ω Load
Figure 73. ENABLE ON and OFF, 10-A Resistive Load
LM25145 LM5145_1V10A_Startup_waveform_nvsai4.gif
VIN step to 24 V 0.11-Ω Load
Figure 72. Start-Up, 10-A Resistive Load
LM25145 LM5145_1V10A_Load_transient_0A10A_waveform_nvsai4.gif
VIN = 24 V
Figure 74. Load Transient Response, 0 A to 10 A to 0 A

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale