• Menu
  • Product
  • Email
  • PDF
  • Order now
  • LMG5200 80V、10A GaN 半桥功率级

    • ZHCSFT3D March   2015  – March 2017 LMG5200

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • LMG5200 80V、10A GaN 半桥功率级
  1. 1 特性
  2. 2 应用
  3. 3 说明
  4. 4 修订历史记录
  5. 5 Pin Configuration and Functions
  6. 6 Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. 7 Parameter Measurement Information
    1. 7.1 Propagation Delay and Mismatch Measurement
  8. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Control Inputs
      2. 8.3.2 Start-up and UVLO
      3. 8.3.3 Bootstrap Supply Voltage Clamping
      4. 8.3.4 Level Shift
    4. 8.4 Device Functional Modes
  9. 9 Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 VCC Bypass Capacitor
        2. 9.2.2.2 Bootstrap Capacitor
        3. 9.2.2.3 Power Dissipation
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Examples
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 开发支持
    2. 12.2 文档支持
      1. 12.2.1 相关文档
    3. 12.3 接收文档更新通知
    4. 12.4 社区资源
    5. 12.5 商标
    6. 12.6 静电放电警告
    7. 12.7 Glossary
  13. 13机械、封装和可订购信息
    1. 13.1 封装信息
  14. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

LMG5200 80V、10A GaN 半桥功率级

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 集成 15mΩ GaN FET 和驱动器
  • 80V 连续电压,100V 脉冲电压额定值
  • 封装经过优化,可实现简单的 PCB 布局,无需考虑底层填料、爬电和余隙要求
  • 超低共源电感可确保实现高压摆率开关,同时在硬开关拓扑中不会造成过度振铃
  • 非常适合隔离式和非隔离式 应用
  • 栅极驱动器支持高达 10MHz 的开关频率
  • 内部自举电源电压钳位可防止 GaN FET 过驱
  • 电源轨欠压锁定保护
  • 优异的传播延迟(典型值为 29.5ns)和匹配(典型值为 2ns)
  • 低功耗

2 应用

  • 宽 VIN 数兆赫兹同步降压转换器
  • D 类音频放大器
  • 适用于电信、工业和企业计算的 48V 负载点 (POL) 转换器
  • 高功率密度单相和三相电机驱动

3 说明

LMG5200 器件集成了 80V、10A 驱动器和 GaN 半桥功率级,采用增强模式氮化镓 (GaN) FET 提供了一套集成功率级解决方案。该器件包含两个 80V GaN FET,它们由采用半桥配置的同一高频 GaN FET 驱动器提供驱动。

GaN FET 在功率转换方面的优势显著,因为其反向恢复电荷几乎为零,输入电容 CISS 也非常小。所有器件均安装在一个完全无键合线的封装平台上,尽可能减少了封装寄生元件数。LMG5200 器件采用 6mm × 8mm × 2mm 无铅封装,可轻松安装在 PCB 上。

该器件的输入与 TTL 逻辑兼容,无论 VCC 电压如何,都能够承受高达 12V 的输入电压。专有的自举电压钳位技术确保了增强模式 GaN FET 的栅极电压处于安全的工作范围内。

该器件配有用户友好型接口且更为出色,进一步提升了分立式 GaN FET 的优势。对于具有高频、高效操作及小尺寸要求的 应用 而言,该器件堪称理想的解决方案。与 TPS53632G 控制器搭配使用时,LMG5200 能够直接将 48V 电压转换为负载点电压 (0.5-1.5V)。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
LMG5200 QFM (9) 6.00mm × 8.00mm
  1. 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品附录。已更正中的印刷错误

简化框图

LMG5200 simp_app_fp_snoscy4.gif

4 修订历史记录

Changes from C Revision (December 2016) to D Revision

  • 通用编辑全局编写和 SDS 更新Go
  • Changed Thermal Information tableGo

Changes from B Revision (January 2016) to C Revision

  • Changed “GaN 技术预览”至“量产数据”Go
  • Added Device Functional Modes Section Go
  • Added Typical Application Section Go
  • Updated Power Supply Recommendations Section Go
  • Added 链接至“开发支持”部分Go

Changes from A Revision (March 2015) to B Revision

  • Changed part number typographical error in Figure 14Go

Changes from * Revision (March 2015) to A Revision

  • 简化框图Go
  • Corrected typographical error in Figure 5Go
  • Corrected typographical error in Figure 10Go
  • Corrected typographical error in Figure 11Go

5 Pin Configuration and Functions

MOF Package
9-Pin QFM
Top View
LMG5200 pinout_mof_9_snoscy4.gif

Pin Functions

PIN I/O(1) DESCRIPTION
NAME NO.
AGND 7 G Analog ground. Ground of driver device.
HB 2 P High-side gate driver bootstrap rail.
HI 4 I High-side gate driver control input
HS 3 P High-side GaN FET source connection
LI 5 I Low-side driver control input
PGND 9 G Power ground. Low-side GaN FET source. Electrically shorted to AGND pin.
SW 8 P Switching node. Electrically shorted to HS pin. Ensure low capacitance at this node on PCB.
VCC 6 P 5-V positive gate drive supply
VIN 1 P Input voltage pin. Electrically connected to high-side GaN FET drain.
(1) I = Input, O = Output, G = Ground, P = Power

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
PARAMETER MIN MAX UNIT
VIN to PGND 0 80 V
VIN to PGND (pulsed, 100-ms maximum duration)(2) 100 V
HB to AGND –0.3 86 V
HS to AGND –5 80 V
HI to AGND –0.3 12 V
LI to AGND –0.3 12 V
VCC to AGND –0.3 6 V
HB to HS –0.3 6 V
HB to VCC 0 80 V
SW to PGND –5 80 V
IOUT from SW pin 10 A
Junction temperature, TJ –40 125 °C
Storage temperature, Tstg –40 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Device can withstand 1000 pulses up to 100 V of 100-ms duration and less than 1% duty cycle over its lifetime.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 V
Charged-device model (CDM), per JEDEC specification
JESD22-C101(2)
±500 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VCC 4.75 5 5.25 V
LI or HI Input 0 12 V
VIN 0 80 V
HS, SW –5 80 V
HB VHS + 4 VHS + 5.25 V
HS, SW slew rate(1) 50 V/ns
Junction temperature, TJ –40 125 °C
(1) This parameter is ensured by design. Not tested in production.

6.4 Thermal Information

THERMAL METRIC (1) (2) LMG5200 UNIT
MOF (QFM)
9 PINS
R θJA Junction-to-ambient thermal resistance 35 °C/W
R θJC(top) Junction-to-case (top) thermal resistance 18 °C/W
R θJB Junction-to-board thermal resistance 16 °C/W
ψ JT Junction-to-top characterization parameter 1.8 °C/W
ψ JB Junction-to-board characterization parameter 16 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator .

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENTS
ICC VCC quiescent current LI = HI = 0 V, VCC = 5 V, HB-HS = 4.6 V 0.08 0.125 mA
ICCO Total VCC operating current f = 500 kHz 3 5 mA
IHB HB quiescent current LI = HI = 0 V, VCC = 5 V, HB-HS = 4.6 V 0.09 0.15 mA
IHBO HB operating current f = 500 kHz, 50% Duty cycle, VDD = 5 V 1.5 2.5 mA
INPUT PINS
VIH High-level input voltage threshold Rising edge 1.87 2.06 2.22 V
VIL Low-level input voltage threshold Falling edge 1.48 1.66 1.76 V
VHYS Hysteresis between rising and falling threshold 400 mV
RI Input pulldown resistance 100 200 300 kΩ
UNDERVOLTAGE PROTECTION
VCCR VCC Rising edge threshold Rising 3.2 3.8 4.5 V
VCC(hyst) VCC UVLO threshold hysteresis 200 mV
VHBR HB Rising edge threshold Rising 2.5 3.2 3.9 V
VHB(hyst) HB UVLO threshold hysteresis 200 mV
BOOTSTRAP DIODE
VDL Low-current forward voltage IVDD-HB = 100 µA 0.45 0.65 V
VDH High current forward voltage IVDD-HB = 100 mA 0.9 1.0 V
RD Dynamic resistance IVDD-HB = 100 mA 1.85 2.8 Ω
HB-HS clamp Regulation Voltage 4.65 5 5.2 V
tBS Bootstrap diode reverse recovery time IF = 100 mA, IR = 100 mA 40 ns
QRR Bootstrap diode reverse recovery charge VVIN = 50 V 2 nC
POWER STAGE
RDS(ON)HS High-side GaN FET on-resistance LI = 0 V, HI = VCC=5 V, HB-HS = 5 V, VIN-SW = 10 A, TJ = 25℃ 15 20 mΩ
RDS(ON)LS Low-side GaN FET on-resistance LI = VCC = 5V, HI = 0 V, HB-HS = 5 V, SW-PGND = 10 A, TJ = 25℃ 15 20 mΩ
VSD GaN 3rd quadrant conduction drop ISD = 500 mA, VIN floating, VVCC = 5 V, HI = LI = 0 V 2 V
IL-VIN-SW Leakage from VIN to SW when the high-side GaN FET and low-side GaN FET are off VIN = 80 V, HI = LI = 0 V, VVCC = 5 V, TJ= 25℃ 25 150 µA
IL-SW-GND Leakage from SW to GND when the high-side GaN FET and low-side GaN FET are off SW = 80 V, HI = LI = 0 V, VVCC = 5V, TJ = 25℃ 25 150 µA
COSS Output capacitance of high-side GaN FET and low-side GaN FET VDS=40 V, VGS= 0V (HI = LI = 0 V) 266 pF
QG Total gate charge VDS=40 V, ID= 10A, VGS= 5 V 3.8 nC
QOSS Output charge VDS=40 V, ID= 10 A 21 nC
QRR Source-to-drain reverse recovery charge Not including internal driver bootstrap diode 0 nC
tHIPLH Propagation delay: HI rising(2) LI = 0 V, VCC = 5 V, HB-HS = 5 V, VIN = 30 V 29.5 50 ns
tHIPHL Propagation delay: HI falling(2) LI = 0 V, VCC = 5 V, HB-HS = 5 V, VIN = 30 V 29.5 50 ns
tLPLH Propagation delay: LI rising(2) HI = 0 V, VCC = 5 V, HB-HS = 5 V, VIN = 30 V 29.5 50 ns
tLPHL Propagation delay: LI falling(2) HI = 0 V, VCC = 5 V, HB-HS = 5 V, VIN = 30 V 29.5 50 ns
tMON Delay matching: LI high and HI low(2) 2 8 ns
tMOFF Delay matching: LI low and HI high(2) 2 8 ns
tPW Minimum input pulse width that changes the output 10 ns
(1) Parameters that show only a typical value are ensured by design and may not be tested in production.
(2) See Propagation Delay and Mismatch Measurement.

6.6 Typical Characteristics

All the curves are based on measurements made on a PCB design with dimensions of 3.2 inches (W) × 2.7 inches (L) × 0.062 inch (T) and 4 layers of 2 oz copper.
The safe operating area (SOA) curves displays the temperature boundaries within an operating system by incorporating the thermal resistance and system power loss. A buck converter is used for measuring the SOA. Figure 2 outlines the temperature and airflow conditions required for a given load current. The area under the curve dictates the SOA for different airflow conditions.
LMG5200 D001_SNOSCY4.gif
VDD = 5 V
Figure 1. VDD Supply Current vs Switching Frequency
LMG5200 D008_SNOSCY4.gif
GaN third quadrant conduction.
Figure 3. Source-to-Drain Current vs Source-to-Drain Voltage
LMG5200 D002_SNOSCY4.gif
VIN = 48 V VOUT = 5 V fSW = 1 MHz
Figure 2. Safe Operating Area
LMG5200 D011_SNOSCY4.gif
.
Figure 4. GaN FET On-Resistance vs Junction Temperature

7 Parameter Measurement Information

7.1 Propagation Delay and Mismatch Measurement

Figure 5 shows the typical test setup used to measure the propagation mismatch. As the gate drives are not accessible, pullup and pulldown resistors in this test circuit are used to indicate when the low-side GaN FET turns ON and the high-side GaN FET turns OFF and vice versa to measure the tMON and tMOFF parameters. Resistance values used in this circuit for the pullup and pulldown resistors are in the order of 1 kΩ; the current sources used are 2 A.

Figure 6 through Figure 9 show propagation delay measurement waveforms. For turnon propagation delay measurements, the current sources are not used. For turnoff time measurements, the current sources are set to 2 A, and a voltage clamp limit is also set, referred to as VIN(CLAMP). When measuring the high-side component turnoff delay, the current source across the high-side FET is turned on, the current source across the low-side FET is off, HI transitions from high-to-low, and output voltage transitions from VIN to VIN(CLAMP). Similarly, for low-side component turnoff propagation delay measurements, the high-side component current source is turned off, and the low-side component current source is turned on, LI transitions from high to low and the output transitions from GND potential to VIN(CLAMP). The time between the transition of LI and the output change is the propagation delay time.

LMG5200 typ_app_3_snoscy4.gif Figure 5. Propagation Delay and Propagation Mismatch Measurement
LMG5200 turn_on_hi_delay_snoscy4.gif Figure 6. High-Side Gate Driver Turnon
LMG5200 turn_off_hi_delay_snoscy4.gif
.
Figure 8. High-Side Gate Driver Turnoff
LMG5200 turn_on_li_delay_snoscy4.gif Figure 7. Low-Side Gate Driver Turnon
LMG5200 turn_off_li_delay_snoscy4.gif Figure 9. Low-Side Gate Driver Turnoff

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale