ISO5852S-Q1 器件是一款用于 IGBT 和 MOSFET 的 5.7 kVRMS 增强型隔离栅极驱动器,具有分离输出(OUTH 和 OUTL)以及 2.5A 的拉电流能力和 5A 的灌电流能力。输入端由 2.25V 至 5.5V 的单电源供电运行。输出端允许的电源范围为 15V 至 30V。两个互补 CMOS 输入控制栅极驱动器的输出状态。76ns 的短暂传播时间保证了对于输出级的精确控制。中的文本由“3V 至 5.5V 单电源”更改为“2.25V 至 5.5V 单电源”中的文本由“IGBT 处于过载状态”更改为“IGBT 处于过流状态”
器件型号 | 封装 | 封装尺寸(标称值) |
---|---|---|
ISO5852S-Q1 | SOIC (16) | 10.30mm x 7.50mm |
日期 | 修订版本 | 注释 |
---|---|---|
2016 年 9 月 | * | 最初发布。 |
内置的去饱和 (DESAT) 故障检测功能可识别 IGBT 何时处于过流状态。检测到 DESAT 时,静音逻辑会立即阻断隔离器输出,并启动软关断过程以禁用 OUTH 引脚并将 OUTL 引脚拉至低电平持续 2μs。当 OUTL 引脚达到 2V 时(相对于最大负电源电势 VEE2),栅极驱动器会被“硬”拉至 VEE2 电势,从而立即将 IGBT 关断。已将中的文本由“并降低 OUTL 的电压持续 2μs 以上”更改为“并将 OUTL 拉至低电平持续 2μs”
当发生去饱和故障时,器件会通过隔离隔栅发送故障信号,以将输入端的 FLT 输出拉为低电平并阻断隔离器的输入。静音逻辑在软关断期间激活。FLT 的输出状态将被锁存,并只能在 RDY 引脚变为高电平后通过 RST 输入上的低电平有效脉冲复位。已更改的第 3 段
如果在由双极输出电源供电的正常运行期间关断 IGBT,输出电压会被硬钳位为 VEE2。如果输出电源为单极,那么可采用有源米勒钳位,这种钳位会在一条低阻抗路径上灌入米勒电流,从而防止 IGBT 在高电压瞬态状态下发生动态导通。
栅极驱动器是否准备就绪待运行由两个欠压锁定电路控制,这两个电路会监视输入端和输出端的电源。如果任意一端电源不足,RDY 输出会变为低电平,否则该输出为高电平。
ISO5852S-Q1 采用 16 引脚小外形尺寸集成电路 (SOIC) 封装. 此器件的额定工作环境温度范围为 -40°C 至 +125°C。
PIN | I/O | DESCRIPTION | |
---|---|---|---|
NAME | NO. | ||
CLAMP | 7 | O | Miller clamp output |
DESAT | 2 | I | Desaturation voltage input |
FLT | 13 | O | Fault output, active-low during DESAT condition |
GND1 | 9 | — | Input ground |
16 | |||
GND2 | 3 | — | Gate drive common. Connect to IGBT emitter. |
IN+ | 10 | I | Non-inverting gate drive voltage control input |
IN– | 11 | I | Inverting gate drive voltage control input |
OUTH | 4 | O | Positive gate drive voltage output |
OUTL | 6 | O | Negative gate drive voltage output |
RDY | 12 | O | Power-good output, active high when both supplies are good. |
RST | 14 | I | Reset input, apply a low pulse to reset fault latch. |
VCC1 | 15 | — | Positive input supply (2.25-V to 5.5-V) |
VCC2 | 5 | — | Most positive output supply potential. |
VEE2 | 1 | — | Output negative supply. Connect to GND2 for unipolar supply application. |
8 |
MIN | MAX | UNIT | ||||
---|---|---|---|---|---|---|
VCC1 | Supply-voltage input side | GND1 – 0.3 | 6 | V | ||
VCC2 | Positive supply-voltage output side | (VCC2 – GND2) | –0.3 | 35 | V | |
VEE2 | Negative supply-voltage output side | (VEE2 – GND2) | –17.5 | 0.3 | V | |
V(SUP2) | Total-supply output voltage | (VCC2 - VEE2) | –0.3 | 35 | V | |
V(OUTH) | Positive gate-driver output voltage | VEE2 – 0.3 | VCC2 + 0.3 | V | ||
V(OUTL) | Negative gate-driver output voltage | VEE2 – 0.3 | VCC2 + 0.3 | V | ||
I(OUTH) | Gate-driver high output current | Maximum pulse width = 10 μs, Maximum duty cycle = 0.2%) | 2.7 | A | ||
I(OUTL) | Gate-driver low output current | Maximum pulse width = 10 μs, Maximum duty cycle = 0.2%) | 5.5 | A | ||
V(LIP) | Voltage at IN+, IN–,FLT, RDY, RST | GND1 – 0.3 | VCC1 + 0.3 | V | ||
I(LOP) | Output current of FLT, RDY | 10 | mA | |||
V(DESAT) | Voltage at DESAT | GND2 – 0.3 | VCC2 + 0.3 | V | ||
V(CLAMP) | Clamp voltage | VEE2 – 0.3 | VCC2 + 0.3 | V | ||
TJ | Junction temperature | –40 | 150 | °C | ||
TSTG | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | ±4000 | V |
Charged-device model (CDM), per AEC Q100-011 | ±1500 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
VCC1 | Supply-voltage input side | 2.25 | 5.5 | V | |
VCC2 | Positive supply-voltage output side (VCC2 – GND2) | 15 | 30 | V | |
V(EE2) | Negative supply-voltage output side (VEE2 – GND2) | –15 | 0 | V | |
V(SUP2) | Total supply-voltage output side (VCC2 – VEE2) | 15 | 30 | V | |
V(IH) | High-level input voltage (IN+, IN–, RST) | 0.7 × VCC1 | VCC1 | V | |
V(IL) | Low-level input voltage (IN+, IN–, RST) | 0 | 0.3 × VCC1 | V | |
tUI | Pulse width at IN+, IN– for full output (CLOAD = 1 nF) | 40 | ns | ||
tRST | Pulse width at RST for resetting fault latch | 800 | ns | ||
TA | Ambient temperature | –40 | 125 | °C |
THERMAL METRIC(1) | ISO5852S-Q1 | UNIT | |
---|---|---|---|
DW (SOIC) | |||
16 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 99.6 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 48.5 | °C/W |
RθJB | Junction-to-board thermal resistance | 56.5 | °C/W |
ψJT | Junction-to-top characterization parameter | 29.2 | °C/W |
ψJB | Junction-to-board characterization parameter | 56.5 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
PD | Maximum power dissipation (both sides) | VCC1 = 5.5-V, VCC2 = 30-V, TA = 25°C | 1255 | mW | ||
PID | Maximum input power dissipation | VCC1 = 5.5-V, VCC2 = 30-V, TA = 25°C | 175 | mW | ||
POD | Maximum output power dissipation | VCC1 = 5.5-V, VCC2 = 30-V, TA = 25°C | 1080 | mW |
PARAMETER | TEST CONDITIONS | VALUE | UNIT | |
---|---|---|---|---|
GENERAL | ||||
CLR | External clearance(1) | Shortest terminal-to-terminal distance through air | 8 | mm |
CPG | External creepage(1) | Shortest terminal-to-terminal distance across the package surface | 8 | mm |
DTI | Distance through the insulation | Minimum internal gap (internal clearance) | 21 | µm |
CTI | Comparative tracking index | DIN EN 60112 (VDE 0303-11); IEC 60112; Material Group I according to IEC 60664-1; UL 746A | >600 | V |
Material group | I | |||
Overvoltage Category | Rated mains voltage ≤ 600 VRMS | I-IV | ||
Rated mains voltage ≤ 1000 VRMS | I-III | |||
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12(2) | ||||
VIORM | Maximum repetitive peak isolation voltage | AC voltage (bipolar) | 2121 | VPK |
VIOWM | Maximum isolation working voltage | AC voltage (sine wave) Time dependent dielectric breakdown (TDDB) test, see Figure 1 | 1500 | VRMS |
DC voltage | 2121 | VDC | ||
VIOTM | Maximum transient isolation voltage | VTEST = VIOTM; t = 60 s (qualification); t = 1 s (100% production) | 8000 | VPK |
VIOSM | Maximum surge isolation voltage(3) | Test method per IEC 60065, 1.2/50 µs waveform, VTEST = 1.6 × VIOSM = 12800 VPK (qualification) | 8000 | |
qpd | Apparent charge(4) | Method a: After I/O safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM = 2545 VPK , tm = 10 s |
≤5 | pC |
Method a: After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM = 3394 VPK , tm = 10 s |
≤5 | |||
Method b1: At routine test (100% production) and preconditioning (type test) Vini = VIOTM, tini = 60 s; Vpd(m) = 1.875× VIORM = 3977 VPK , tm = 10 s |
≤5 | |||
CIO | Barrier capacitance, input to output(5) | VIO = 0.4 sin (2πft), f = 1 MHz | 1 | pF |
RIO | Isolation resistance, input to output(5) | VIO = 500 V, TA = 25°C | > 1012 | Ω |
VIO = 500 V, 100°C ≤ TA ≤ 125°C | > 1011 | |||
VIO = 500 V at TS = 150°C | > 109 | |||
Pollution degree | 2 | |||
Climatic category | ||||
UL 1577 | ||||
VISO | Withstand isolation voltage | VTEST = VISO = 5700 VRMS, t = 60 s (qualification); VTEST = 1.2 × VISO = 6840 VRMS, t = 1 s (100% production) | 5700 | VRMS |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
IS | Safety input, output, or supply current | RθJA = 99.6°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 2 | 456 | mA | ||
RθJA = 99.6°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 2 | 346 | |||||
RθJA = 99.6°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 2 | 228 | |||||
RθJA = 99.6°C/W, VI = 15 V, TJ = 150°C, TA = 25°C, see Figure 2 | 84 | |||||
RθJA = 99.6°C/W, VI = 30 V, TJ = 150°C, TA = 25°C, see Figure 2 | 42 | |||||
PS | Safety input, output, or total power | RθJA = 99.6°C/W, TJ = 150°C, TA = 25°C, see Figure 3 | 255(1) | mW | ||
TS | Maximum ambient safety temperature | 150 | °C |
The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.
VDE | CSA | UL | CQC | TUV |
---|---|---|---|---|
Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 61010-1 (VDE 0411-1):2011-07 |
Plan to certify under CSA Component Acceptance Notice 5A, IEC 60950-1, and IEC 60601-1 | Recognized under UL 1577 Component Recognition Program | Certified according to GB4943.1-2011 | Certified according to EN 61010-1:2010 (3rd Ed) and EN 60950-1:2006/A11:2009/A1:2010/ A12:2011/A2:2013 |
Reinforced Insulation Maximum Transient isolation voltage, 8000 VPK; Maximum surge isolation voltage, 8000 VPK, Maximum repetitive peak isolation voltage, 2121 VPK |
Isolation Rating of 5700 VRMS; Reinforced insulation per CSA 60950-1- 07+A1+A2 and IEC 60950-1 (2nd Ed.), 800 VRMS max working voltage (pollution degree 2, material group I) ; 2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 250 VRMS (354 VPK) max working voltage |
Single Protection, 5700 VRMS (1) | Reinforced Insulation, Altitude ≤ 5000m, Tropical climate, 400 VRMS maximum working voltage | 5700 VRMS Reinforced insulation per EN 61010-1:2010 (3rd Ed) up to working voltage of 600 VRMS 5700 VRMS Reinforced insulation per EN 60950-1:2006/A11:2009/A1:2010/ A12:2011/A2:2013 up to working voltage of 800 VRMS |
Certification completed Certificate number: 40040142 |
Certificate planned | Certification completed File number: E181974 |
Certification completed Certificate number: CQC16001141761 |
Certification completed Client ID number: 77311 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VOLTAGE SUPPLY | |||||||
VIT+(UVLO1) | Positive-going UVLO1 threshold-voltage input side (VCC1 – GND1) | 2.25 | V | ||||
VIT-(UVLO1) | Negative-going UVLO1 threshold-voltage input side (VCC1 – GND1) | 1.7 | V | ||||
VHYS(UVLO1) | UVLO1 Hysteresis voltage (VIT+ – VIT–) input side | 0.2 | V | ||||
VIT+(UVLO2) | Positive-going UVLO2 threshold-voltage output side (VCC2 – GND2) | 12 | 13 | V | |||
VIT–(UVLO2) | Negative-going UVLO2 threshold-voltage output side (VCC2 – GND2) | 9.5 | 11 | V | |||
VHYS(UVLO2) | UVLO2 hysteresis voltage (VIT+ – VIT–) output side | 1 | V | ||||
IQ1 | Input-supply quiescent current | 2.8 | 4.5 | mA | |||
IQ2 | Output-supply quiescent current | 3.6 | 6 | mA | |||
LOGIC I/O | |||||||
VIT+(IN,RST) | Positive-going input-threshold voltage (IN+, IN–, RST) | 0.7 × VCC1 | V | ||||
VIT–(IN,RST) | Negative-going input-threshold voltage (IN+, IN–, RST) | 0.3 × VCC1 | V | ||||
VHYS(IN,RST) | Input hysteresis voltage (IN+, IN–, RST) | 0.15 × VCC1 | V | ||||
IIH | High-level input leakage at (IN+)(1) | IN+ = VCC1 | 100 | µA | |||
IIL | Low-level input leakage at (IN–, RST)(2) | IN– = GND1, RST = GND1 | -100 | µA | |||
IPU | Pullup current of FLT, RDY | V(RDY) = GND1, V(FLT) = GND1 | 100 | µA | |||
V(OL) | Low-level output voltage at FLT, RDY | I(FLT) = 5 mA | 0.2 | V | |||
GATE DRIVER STAGE | |||||||
V(OUTPD) | Active output pulldown voltage | I(OUTH/L) = 200 mA, VCC2 = open | 2 | V | |||
VOUTH | High-level output voltage | I(OUTH) = –20 mA | VCC2 – 0.5 | VCC2 – 0.24 | V | ||
VOUTL | Low-level output voltage | I(OUTL) = 20 mA | VEE2 + 13 | VEE2 + 50 | mV | ||
I(OUTH) | High-level output peak current | IN+ = high, IN– = low, V(OUTH) = VCC2 - 15 V |
1.5 | 2.5 | A | ||
I(OUTL) | Low-level output peak current | IN+ = low, IN– = high, V(OUTL) = VEE2 + 15 V |
3.4 | 5 | A | ||
I(OLF) | Low-level output current during fault condition | 130 | mA | ||||
ACTIVE MILLER CLAMP | |||||||
V(CLP) | Low-level clamp voltage | I(CLP) = 20 mA | VEE2 + 0.015 | VEE2 + 0.08 | V | ||
I(CLP) | Low-level clamp current | V(CLAMP) = VEE2 + 2.5 V | 1.6 | 2.5 | 3.3 | A | |
V(CLTH) | Clamp threshold voltage | 1.6 | 2.1 | 2.5 | V | ||
SHORT CIRCUIT CLAMPING | |||||||
V(CLP-OUTH) | Clamping voltage (VOUTH – VCC2) |
IN+ = high, IN– = low, tCLP = 10 µs, I(OUTH) = 500 mA | 1.1 | 1.3 | V | ||
V(CLP-OUTL) | Clamping voltage (VOUTL – VCC2) |
IN+ = high, IN– = low, tCLP = 10 µs, I(OUTL) = 500 mA | 1.3 | 1.5 | V | ||
V(CLP-CLP) | Clamping voltage (VCLP – VCC2) |
IN+ = high, IN– = low, tCLP = 10 µs, I(CLP) = 500 mA | 1.3 | V | |||
V(CLP-CLAMP) | Clamping voltage at CLAMP | IN+ = High, IN– = Low, I(CLP) = 20 mA | 0.7 | 1.1 | V | ||
V(CLP-OUTL) | Clamping voltage at OUTL (VCLP – VCC2) |
IN+ = High, IN– = Low, I(OUTL) = 20 mA | 0.7 | 1.1 | V | ||
DESAT PROTECTION | |||||||
I(CHG) | Blanking-capacitor charge current | V(DESAT) – GND2 = 2 V | 0.42 | 0.5 | 0.58 | mA | |
I(DCHG) | Blanking-capacitor discharge current | V(DESAT) – GND2 = 6 V | 9 | 14 | mA | ||
V(DSTH) | DESAT threshold voltage with respect to GND2 | 8.3 | 9 | 9.5 | V | ||
V(DSL) | DESAT voltage with respect to GND2, when OUTH or OUTL is driven low | 0.4 | 1 | V |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
tr | Output-signal rise time at OUTH | CLOAD = 1 nF | See Figure 44, Figure 45, and Figure 46 | 12 | 18 | 35 | ns |
tf | Output-signal fall time at OUTL | CLOAD = 1 nF | 12 | 20 | 37 | ns | |
tPLH, tPHL | Propagation Delay | CLOAD = 1 nF | 76 | 110 | ns | ||
tsk-p | Pulse skew |tPHL – tPLH| | CLOAD = 1 nF | 20 | ns | |||
tsk-pp | Part-to-part skew | CLOAD = 1 nF | 30(1) | ns | |||
tGF (IN,/RST) | Glitch filter on IN+, IN–, RST | CLOAD = 1 nF | 20 | 30 | 40 | ns | |
tDS (90%) | DESAT sense to 90% VOUTH/L delay | CLOAD = 10 nF | 553 | 760 | ns | ||
tDS (10%) | DESAT sense to 10% VOUTH/L delay | CLOAD = 10 nF | 2 | 3.5 | μs | ||
tDS (GF) | DESAT-glitch filter delay | CLOAD = 1 nF | 330 | ns | |||
tDS (FLT) | DESAT sense to FLT-low delay | See Figure 46 | 1.4 | μs | |||
tLEB | Leading-edge blanking time | See Figure 44 and Figure 45 | 310 | 400 | 480 | ns | |
tGF(RSTFLT) | Glitch filter on RST for resetting FLT | 300 | 800 | ns | |||
CI | Input capacitance(2) | VI = VCC1 / 2 + 0.4 × sin (2πft), f = 1 MHz, VCC1 = 5 V | 2 | pF | |||
CMTI | Common-mode transient immunity | VCM = 1500 V, see Figure 47 | 100 | 120 | kV/μs |
TA upto 150°C | Stress-voltage frequency = 60 Hz |
Unipolar: VCC2 – VEE2 = VCC2 – GND2 |
CL = 1 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 20 V |
CL = 100 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 20 V |
CL = 10 nF | RGH = 10 Ω | RGL = 5 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 20 V |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 15 V | DESAT = 220 pF |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 30 V | DESAT = 220 pF |
IN+ = High | IN– = Low |
No CL |
CL = 1 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC1 = 5 V |
RGH = 10 Ω | RGL = 5 Ω | VCC1 = 5 V |
RGH = 0 Ω | RGL = 0 Ω | VCC1 = 5 V |
RGH = 10 Ω | RGL = 5 Ω | VCC1 = 5 V |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 = 15 V | DESAT = 6 V |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 20 V |
CL = 1 nF | RGH = 10 Ω | RGL = 5 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 20 V |
CL = 100 nF | RGH = 10 Ω | RGL = 5 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 20 V |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 15 V | DESAT = 220 pF |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 – VEE2 = VCC2 – GND2 = 30 V | DESAT = 220 pF |
IN+ = Low | IN– = Low |
Input frequency = 1 kHz |
RGH = 10 Ω | RGL = 5 Ω, 20 kHz |
CL = 1 nF | RGH = 0 Ω | RGL = 0 Ω |
VCC2 = 15 V |
RGH = 0 Ω | RGL = 0 Ω | VCC1 = 5 V |
RGH = 10 Ω | RGL = 5 Ω | VCC1 = 5 V |
CL = 10 nF | RGH = 0 Ω | RGL = 0 Ω |
The ISO5852S-Q1 is an isolated gate driver for IGBTs and MOSFETs. Input CMOS logic and output power stage are separated by a Silicon dioxide (SiO2) capacitive isolation.
The IO circuitry on the input side interfaces with a micro controller and consists of gate drive control and RESET (RST) inputs, READY (RDY) and FAULT (FLT) alarm outputs. The power stage consists of power transistors to supply 2.5-A pullup and 5-A pulldown currents to drive the capacitive load of the external power transistors, as well as DESAT detection circuitry to monitor IGBT collector-emitter overvoltage under short circuit events. The capacitive isolation core consists of transmit circuitry to couple signals across the capacitive isolation barrier, and receive circuitry to convert the resulting low-swing signals into CMOS levels. The ISO5852S-Q1 also contains under voltage lockout circuitry to prevent insufficient gate drive to the external IGBT, and active output pulldown feature which ensures that the gate-driver output is held low, if the output supply voltage is absent. The ISO5852S-Q1 also has an active Miller clamp function which can be used to prevent parasitic turn-on of the external power transistor, due to Miller effect, for unipolar supply operation.
The ISO5852S-Q1 supports both bipolar and unipolar power supply with active Miller clamp.
For operation with bipolar supplies, the IGBT is turned off with a negative voltage on its gate with respect to its emitter. This prevents the IGBT from unintentionally turning on because of current induced from its collector to its gate due to Miller effect. In this condition it is not necessary to connect CLAMP output of the gate driver to the IGBT gate, but connecting CLAMP output of the gate driver to the IGBT gate is also not an issue. Typical values of VCC2 and VEE2 for bipolar operation are 15-V and -8-V with respect to GND2.
For operation with unipolar supply, typically, VCC2 is connected to 15-V with respect to GND2, and VEE2 is connected to GND2. In this use case, the IGBT can turn on due to additional charge from IGBT Miller capacitance caused by a high voltage slew rate transition on the IGBT collector. To prevent IGBT to turn on, the CLAMP pin is connected to IGBT gate and Miller current is sinked through a low impedance CLAMP transistor.
Miller CLAMP is designed for Miller current up to 2-A. When the IGBT is turned-off and the gate voltage transitions below 2-V the CLAMP current output is activated.
The Active output pulldown feature ensures that the IGBT gate OUTH/L is clamped to VEE2 to ensure safe IGBT off-state, when the output side is not connected to the power supply.
Undervoltage Lockout (UVLO) ensures correct switching of IGBT. The IGBT is turned-off, if the supply VCC1 drops below VIT-(UVLO1), irrespective of IN+, IN– and RST input till VCC1 goes above VIT+(UVLO1).
In similar manner, the IGBT is turned-off, if the supply VCC2 drops below VIT-(UVLO2), irrespective of IN+, IN– and RST input till VCC2 goes above VIT+(UVLO2).
Ready (RDY) pin indicates status of input and output side Under Voltage Lock-Out (UVLO) internal protection feature. If either side of device have insufficient supply (VCC1 or VCC2), the RDY pin output goes low; otherwise, RDY pin output is high. RDY pin also serves as an indication to the micro-controller that the device is ready for operation.
During IGBT overcurrent condition, a mute logic initiates a soft-turn-off procedure which disables, OUTH, and pulls OUTL to low over a time span of 2 μs. When desaturation is active, a fault signal is sent across the isolation barrier pulling the FLT output at the input side low and blocking the isolator input. mute logic is activated through the soft-turn-off period. The FLT output condition is latched and can be reset only after RDY goes high, through a active-low pulse at the RST input. RST has an internal filter to reject noise and glitches. By asserting RST for at-least the specified minimum duration (800 ns), device input logic can be enabled or disabled.
Under short circuit events it is possible that currents are induced back into the gate-driver OUTH/L and CLAMP pins due to parasitic Miller capacitance between the IGBT collector and gate terminals. Internal protection diodes on OUTH/L and CLAMP help to sink these currents while clamping the voltages on these pins to values slightly higher than the output side supply.
In ISO5852S-Q1 OUTH/L to follow IN+ in normal functional mode, FLT pin must be in the high state. Table 1 lists the device functions.
VCC1 | VCC2 | IN+ | IN– | RST | RDY | OUTH/L |
---|---|---|---|---|---|---|
PU | PD | X | X | X | Low | Low |
PD | PU | X | X | X | Low | Low |
PU | PU | X | X | Low | High | Low |
PU | Open | X | X | X | Low | Low |
PU | PU | Low | X | X | High | Low |
PU | PU | X | High | X | High | Low |
PU | PU | High | Low | High | High | High |