空白
空白
空白
空白
CC1350 器件是一款经济高效型超低功耗双频带射频器件,由 德州仪器 (TI)™倾力打造,属于 SimpleLink™ 微控制器 (MCU) 平台的组成部分。该平台包含 Wi-Fi®、低功耗 Bluetooth®、低于 1GHz、以太网、 Zigbee®、Thread 和主机 MCU。所有这些器件均共用一个简单易用的通用开发环境,其中包含单个核心软件开发套件 (SDK) 和丰富的工具集。借助一次性集成的 SimpleLink 平台,用户可以将产品组合中的任何器件组合添加到自己的设计中,从而在设计要求变更时实现 100% 代码重用。有关更多信息,请访问 www.ti.com.cn/simplelink。
凭借极低的有源射频和 MCU 电流消耗以及灵活的低功耗模式, 器件可确保卓越的电池寿命,并能够在小型纽扣电池供电的情况下以及在能量采集应用中实现远距离 工作。
CC1350 器件是 CC13xx 和 CC26xx 系列经济高效型超低功耗无线 MCU 中的一员,能够同时支持低于 1GHz 和 2.4GHz 射频。CC1350 器件在一个支持多个物理层和射频标准的平台上将灵活的超低功耗射频收发器与强大的 48MHz Arm® Cortex®-M3 微控制器结合在一起。专用无线电控制器 (Cortex®-M0) 可处理存储在 ROM 或 RAM 中的低级射频协议命令,因而可确保超低功耗和灵活性以同时支持低于 1GHz 协议和 2.4GHz 协议(例如低功耗蓝牙)。因此,可以将低于 1GHz 通信解决方案(提供绝佳的射频范围)与低功耗蓝牙智能手机通信连接(通过手机应用程序提供出色的用户体验)完美结合。该系列中唯一一款低于 1GHz 的器件是 CC1310。
CC1350 器件是高度集成的真正的单芯片解决方案,整合了完整的射频系统和片上直流/直流转换器。
传感器可由专用的超低功耗自主 MCU 以超低功耗方式进行处理(该 MCU 可配置为处理模拟和数字传感器),因此主 MCU (Arm® Cortex®-M3) 能够最大限度延长睡眠时间。
CC1350 器件的电源和时钟管理系统以及无线电系统需要采用特定配置并由软件处理才能正确运行,这已在 TI-RTOS 中实现。TI 建议将此软件框架用于该器件的全部应用开发过程。完整的 TI-RTOS 和设备驱动程序均有免费的源代码可供使用。
Changes from November 20, 2016 to July 13, 2018 (from A Revision () to B Revision)
Changes from June 20, 2016 to November 20, 2016 (from * Revision () to A Revision)
Table 3-1 lists the device family overview.
DEVICE | RADIO SUPPORT | FLASH
(KB) |
RAM
(KB) |
GPIOs | PACKAGE SIZE |
---|---|---|---|---|---|
CC1350F128RGZ | Proprietary, Wireless M-Bus,
IEEE 802.15.4g, Bluetooth low energy |
128 | 20 | 30 | RGZ (7 mm × 7 mm VQFN48)
|
CC1350F128RHB | Proprietary, Wireless M-Bus,
IEEE 802.15.4g, Bluetooth low energy |
128 | 20 | 15 | RHB (5 mm × 5 mm VQFN32) |
CC1350F128RSM | Proprietary, Wireless M-Bus,
IEEE 802.15.4g, Bluetooth low energy |
128 | 20 | 10 | RSM (4 mm × 4 mm VQFN32) |
CC1310 | Sub-1 GHz
Proprietary, Wireless M-Bus, IEEE 802.15.4g |
128
64/32 |
20
16 |
10-30 | RGZ (7 mm × 7 mm VQFN48)
RHB (5 mm × 5 mm VQFN32) RSM (4 mm × 4 mm VQFN32) |
CC2640R2 | Bluetooth 5 low energy
2.4-GHz proprietary FSK-based formats |
128 | 20 | 10-31 | RGZ (7 mm × 7 mm VQFN48)
RHB (5 mm × 5 mm VQFN32) RSM (4 mm × 4 mm VQFN32) YFV (2.7 mm × 2.7 mm DSBGA34) |
CC1312R | Sub-1 GHz
Proprietary, Wireless M-Bus, IEEE 802.15.4g |
352 | 80 | 30 | RGZ (7 mm × 7 mm VQFN48) |
CC1352R | Dual-band (2.4-GHz and Sub-1 GHz) Multiprotocol | 352 | 80 | 28 | RGZ (7 mm × 7 mm VQFN48) |
CC2642R | Bluetooth 5 low energy
2.4-GHz proprietary FSK-based formats |
352 | 80 | 31 | RGZ (7 mm × 7 mm VQFN48) |
CC2652R | Multiprotocol
Bluetooth 5 low energy Zigbee Thread 2.4-GHz proprietary FSK-based formats |
352 | 80 | 31 | RGZ (7 mm × 7 mm VQFN48) |
The wireless connectivity portfolio offers a wide selection of low-power RF solutions suitable for a broad range of application. The offerings range from fully customized solutions to turnkey offerings with precertified hardware and software (protocol).
Long-range, low power wireless connectivity solutions are offered in a wide range of
Sub-1 GHz ISM bands.
Review products that are frequently purchased or used with this product.
Figure 4-1 shows the RSM pinout diagram.
I/O pins marked in Figure 4-1 in bold have high-drive capabilities; they are as follows:
I/O pins marked in Figure 4-1 in italics have analog capabilities; they are as follows:
PIN | TYPE | DESCRIPTION | |
---|---|---|---|
NAME | NO. | ||
DCDC_SW | 18 | Power | Output from internal DC/DC(1) |
DCOUPL | 12 | Power | 1.27-V regulated digital-supply decoupling capacitor(2) |
DIO_0 | 8 | Digital I/O | GPIO, Sensor Controller, high-drive capability |
DIO_1 | 9 | Digital I/O | GPIO, Sensor Controller, high-drive capability |
DIO_2 | 10 | Digital I/O | GPIO, Sensor Controller, high-drive capability |
DIO_3 | 15 | Digital I/O | GPIO, high-drive capability, JTAG_TDO |
DIO_4 | 16 | Digital I/O | GPIO, high-drive capability, JTAG_TDI |
DIO_5 | 22 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_6 | 23 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_7 | 24 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_8 | 25 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_9 | 26 | Digital or analog I/O | GPIO, Sensor Controller, analog |
EGP | – | Power | Ground; exposed ground pad |
JTAG_TMSC | 13 | Digital I/O | JTAG TMSC |
JTAG_TCKC | 14 | Digital I/O | JTAG TCKC(3) |
RESET_N | 21 | Digital input | Reset, active low. No internal pullup. |
RF_N | 2 | RF I/O | Negative RF input signal to LNA during RX
Negative RF output signal from PA during TX |
RF_P | 1 | RF I/O | Positive RF input signal to LNA during RX
Positive RF output signal from PA during TX |
RX_TX | 4 | RF I/O | Optional bias pin for the RF LNA |
VDDS | 27 | Power | 1.8-V to 3.8-V main chip supply(1) |
VDDS2 | 11 | Power | 1.8-V to 3.8-V GPIO supply(1) |
VDDS_DCDC | 19 | Power | 1.8-V to 3.8-V DC/DC supply |
VDDR | 28 | Power | 1.7-V to 1.95-V supply, connect to output of internal DC/DC(2)(4) |
VDDR_RF | 32 | Power | 1.7-V to 1.95-V supply, connect to output of internal DC/DC(2)(5) |
VSS | 3, 7, 17,
20, 29 |
Power | Ground |
X32K_Q1 | 5 | Analog I/O | 32-kHz crystal oscillator pin 1 |
X32K_Q2 | 6 | Analog I/O | 32-kHz crystal oscillator pin 2 |
X24M_N | 30 | Analog I/O | 24-MHz crystal oscillator pin 1 |
X24M_P | 31 | Analog I/O | 24-MHz crystal oscillator pin 2 |
Figure 4-2 shows the RHB pinout diagram.
I/O pins marked in Figure 4-2 in bold have high-drive capabilities; they are as follows:
I/O pins marked in Figure 4-2 in italics have analog capabilities; they are as follows:
PIN | TYPE | DESCRIPTION | |
---|---|---|---|
NAME | NO. | ||
DCDC_SW | 17 | Power | Output from internal DC/DC(1) |
DCOUPL | 12 | Power | 1.27-V regulated digital-supply decoupling(2) |
DIO_0 | 6 | Digital I/O | GPIO, Sensor Controller |
DIO_1 | 7 | Digital I/O | GPIO, Sensor Controller |
DIO_2 | 8 | Digital I/O | GPIO, Sensor Controller, high-drive capability |
DIO_3 | 9 | Digital I/O | GPIO, Sensor Controller, high-drive capability |
DIO_4 | 10 | Digital I/O | GPIO, Sensor Controller, high-drive capability |
DIO_5 | 15 | Digital I/O | GPIO, high-drive capability, JTAG_TDO |
DIO_6 | 16 | Digital I/O | GPIO, high-drive capability, JTAG_TDI |
DIO_7 | 20 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_8 | 21 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_9 | 22 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_10 | 23 | Digital or analog I/O | GPIO, Sensor Controller, Analog |
DIO_11 | 24 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_12 | 25 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_13 | 26 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_14 | 27 | Digital or analog I/O | GPIO, Sensor Controller, analog |
EGP | – | Power | Ground; exposed ground pad |
JTAG_TMSC | 13 | Digital I/O | JTAG TMSC, high-drive capability |
JTAG_TCKC | 14 | Digital I/O | JTAG TCKC(3) |
RESET_N | 19 | Digital input | Reset, active low. No internal pullup. |
RF_N | 2 | RF I/O | Negative RF input signal to LNA during RX
Negative RF output signal from PA during TX |
RF_P | 1 | RF I/O | Positive RF input signal to LNA during RX
Positive RF output signal from PA during TX |
RX_TX | 3 | RF I/O | Optional bias pin for the RF LNA |
VDDR | 29 | Power | 1.7-V to 1.95-V supply, connect to output of internal DC/DC(2)(4) |
VDDR_RF | 32 | Power | 1.7-V to 1.95-V supply, connect to output of internal DC/DC(2)(5) |
VDDS | 28 | Power | 1.8-V to 3.8-V main chip supply(1) |
VDDS2 | 11 | Power | 1.8-V to 3.8-V GPIO supply(1) |
VDDS_DCDC | 18 | Power | 1.8-V to 3.8-V DC/DC supply |
X24M_N | 30 | Analog I/O | 24-MHz crystal oscillator pin 1 |
X24M_P | 31 | Analog I/O | 24-MHz crystal oscillator pin 2 |
X32K_Q1 | 4 | Analog I/O | 32-kHz crystal oscillator pin 1 |
X32K_Q2 | 5 | Analog I/O | 32-kHz crystal oscillator pin 2 |
Figure 4-3 shows the RGZ pinout diagram.
I/O pins marked in Figure 4-3 in bold have high-drive capabilities; they are as follows:
I/O pins marked in Figure 4-3 in italics have analog capabilities; they are as follows:
PIN | TYPE | DESCRIPTION | |
---|---|---|---|
NAME | NO. | ||
DCDC_SW | 33 | Power | Output from internal DC/DC(1)(2) |
DCOUPL | 23 | Power | 1.27-V regulated digital-supply (decoupling capacitor)(2) |
DIO_1 | 6 | Digital I/O | GPIO, Sensor Controller |
DIO_2 | 7 | Digital I/O | GPIO, Sensor Controller |
DIO_3 | 8 | Digital I/O | GPIO, Sensor Controller |
DIO_4 | 9 | Digital I/O | GPIO, Sensor Controller |
DIO_5 | 10 | Digital I/O | GPIO, Sensor Controller, high-drive capability |
DIO_6 | 11 | Digital I/O | GPIO, Sensor Controller, high-drive capability |
DIO_7 | 12 | Digital I/O | GPIO, Sensor Controller, high-drive capability |
DIO_8 | 14 | Digital I/O | GPIO |
DIO_9 | 15 | Digital I/O | GPIO |
DIO_10 | 16 | Digital I/O | GPIO |
DIO_11 | 17 | Digital I/O | GPIO |
DIO_12 | 18 | Digital I/O | GPIO |
DIO_13 | 19 | Digital I/O | GPIO |
DIO_14 | 20 | Digital I/O | GPIO |
DIO_15 | 21 | Digital I/O | GPIO |
DIO_16 | 26 | Digital I/O | GPIO, JTAG_TDO, high-drive capability |
DIO_17 | 27 | Digital I/O | GPIO, JTAG_TDI, high-drive capability |
DIO_18 | 28 | Digital I/O | GPIO |
DIO_19 | 29 | Digital I/O | GPIO |
DIO_20 | 30 | Digital I/O | GPIO |
DIO_21 | 31 | Digital I/O | GPIO |
DIO_22 | 32 | Digital I/O | GPIO |
DIO_23 | 36 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_24 | 37 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_25 | 38 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_26 | 39 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_27 | 40 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_28 | 41 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_29 | 42 | Digital or analog I/O | GPIO, Sensor Controller, analog |
DIO_30 | 43 | Digital or analog I/O | GPIO, Sensor Controller, analog |
EGP | – | Power | Ground; exposed ground pad |
JTAG_TMSC | 24 | Digital I/O | JTAG TMSC, high-drive capability |
JTAG_TCKC | 25 | Digital I/O | JTAG TCKC(3) |
RESET_N | 35 | Digital input | Reset, active-low. No internal pullup. |
RF_N | 2 | RF I/O | Negative RF input signal to LNA during RX
Negative RF output signal from PA during TX |
RF_P | 1 | RF I/O | Positive RF input signal to LNA during RX
Positive RF output signal from PA during TX |
VDDR | 45 | Power | 1.7-V to 1.95-V supply, connect to output of internal DC/DC(2)(4) |
VDDR_RF | 48 | Power | 1.7-V to 1.95-V supply, connect to output of internal DC/DC(2)(5) |
VDDS | 44 | Power | 1.8-V to 3.8-V main chip supply(1) |
VDDS2 | 13 | Power | 1.8-V to 3.8-V DIO supply(1) |
VDDS3 | 22 | Power | 1.8-V to 3.8-V DIO supply(1) |
VDDS_DCDC | 34 | Power | 1.8-V to 3.8-V DC/DC supply |
X24M_N | 46 | Analog I/O | 24-MHz crystal oscillator pin 1 |
X24M_P | 47 | Analog I/O | 24-MHz crystal oscillator pin 2 |
RX_TX | 3 | RF I/O | Optional bias pin for the RF LNA |
X32K_Q1 | 4 | Analog I/O | 32-kHz crystal oscillator pin 1 |
X32K_Q2 | 5 | Analog I/O | 32-kHz crystal oscillator pin 2 |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Supply voltage (VDDS, VDDS2, and VDDS3) | –0.3 | 4.1 | V | |
Voltage on any digital pin(4)(3) | –0.3 | VDDSn + 0.3, max 4.1 | V | |
Voltage on crystal oscillator pins X32K_Q1, X32K_Q2, X24M_N, and X24M_P | –0.3 | VDDR + 0.3, max 2.25 | V | |
Voltage on ADC input (Vin) | Voltage scaling enabled | –0.3 | VDDS | V |
Voltage scaling disabled, internal reference | –0.3 | 1.49 | ||
Voltage scaling disabled, VDDS as reference | –0.3 | VDDS / 2.9 | ||
Input RF level | 10 | dBm | ||
Storage temperature (Tstg) | –40 | 150 | °C |
VALUE | UNIT | ||||
---|---|---|---|---|---|
VESD | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1) | All pins | ±3000 | V |
Charged device model (CDM), per JESD22-C101(2) | All pins | ±500 |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
Ambient temperature | –40 | 85 | °C | ||
Operating supply voltage (VDDS) | For operation in battery-powered and
3.3-V systems (internal DC/DC can be used to minimize power consumption) |
1.8 | 3.8 | V | |
Operating supply voltages (VDDS2 and VDDS3) | VDDS < 2.7 V | 1.8 | 3.8 | V | |
Operating supply voltages (VDDS2 and VDDS3) | VDDS ≥ 2.7 V | 1.9 | 3.8 | V | |
Rising supply voltage slew rate | 0 | 100 | mV/µs | ||
Falling supply voltage slew rate | 0 | 20 | mV/µs | ||
Falling supply voltage slew rate, with low-power flash setting(1) | 3 | mV/µs | |||
Positive temperature gradient in standby(2) | No limitation for negative temperature gradient, or outside standby mode | 5 | °C/s |