• Menu
  • Product
  • Email
  • PDF
  • Order now
  • TPS22918-Q1 5.5V、2A、导通电阻为 52mΩ 的负载开关

    • ZHCSF76B July   2016  – December 2019 TPS22918-Q1

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • TPS22918-Q1 5.5V、2A、导通电阻为 52mΩ 的负载开关
  1. 1 特性
  2. 2 应用
  3. 3 说明
    1.     Device Images
      1.      简化原理图
      2.      导通电阻与输入电压间的关系典型值
  4. 4 修订历史记录
  5. 5 Pin Configuration and Functions
    1.     Pin Functions
  6. 6 Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical DC Characteristics
    8. 6.8 Typical AC Characteristics
  7. 7 Parameter Measurement Information
  8. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 On and Off Control
      2. 8.3.2 Quick Output Discharge (QOD)
        1. 8.3.2.1 QOD when System Power is Removed
        2. 8.3.2.2 Internal QOD Considerations
      3. 8.3.3 Adjustable Rise Time (CT)
    4. 8.4 Device Functional Modes
  9. 9 Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Input Capacitor (CIN)
        2. 9.2.2.2 Output Capacitor (CL) (Optional)
        3. 9.2.2.3 Shutdown Sequencing During Unexpected System Power Loss
        4. 9.2.2.4 VIN to VOUT Voltage Drop
        5. 9.2.2.5 Inrush Current
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 开发支持
    2. 12.2 文档支持
      1. 12.2.1 相关文档
    3. 12.3 接收文档更新通知
    4. 12.4 社区资源
    5. 12.5 商标
    6. 12.6 静电放电警告
    7. 12.7 Glossary
  13. 13机械、封装和可订购信息
  14. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

TPS22918-Q1 5.5V、2A、导通电阻为 52mΩ 的负载开关

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 符合 AEC-Q100 标准
  • 集成式单通道负载开关
  • 符合汽车类 应用的 16 通道 AFE:
    • 器件温度等级 2:–40°C 至 +105°C 的环境工作温度范围
  • 提供功能安全
    • 提供文档以帮助创建功能安全系统设计
  • 输入电压范围:1V 至 5.5V
  • 低导通电阻 (RON)
    • RON = 52mΩ(VIN = 5V 时的典型值)
    • RON = 53mΩ(VIN = 3.3V 时的典型值)
  • 2A 最大持续开关电流
  • 低静态电流
    • 8.3µA(VIN = 3.3V 时的典型值)
  • 低控制输入阈值支持使用 1V 或更高的 GPIO
  • 可配置快速输出放电 (QOD)
  • 通过 CT 引脚可配置上升时间
  • 小型 SOT23-6 封装 (DBV)
    • 2.9mm × 2.8mm,间距 0.95mm,
      高 1.45mm(带引线)
  • ESD 性能测试符合 AEC Q100 标准
    • ±2kV 人体模型 (HBM) 和 ±750V 带电器件模型 (CDM)

2 应用

  • 汽车电子产品
  • 信息娱乐系统
  • 仪表组
  • ADAS(高级驾驶辅助系统)

3 说明

TPS22918-Q1 是一款单通道负载开关,可对上升时间和快速输出放电进行配置。此器件包括一个 N 沟道金属氧化物半导体场效应晶体管 (MOSFET),可在 1V 至 5.5V 的输入电压范围内运行并可支持
2A 的最大持续电流。此开关由一个开关输入控制,能够直接连接低电压控制信号。

该器件的可配置上升时间可降低大容量负载电容所产生的浪涌电流,从而降低或消除电源压降。TPS22918-Q1 具有 一个可配置的快速输出放电 (QOD) 引脚,用于控制器件的下降时间,以便针对掉电或排序进行灵活设计。

TPS22918-Q1 采用小型、带引线的 SOT-23 封装 (DBV),方便对焊接点进行外观检查。该器件在自然通风环境下的额定运行温度范围为 –40°C 至 +105°C。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
TPS22918-Q1 SOT-23 (6) 2.90mm × 1.60mm
  1. 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

Device Images

简化原理图

TPS22918-Q1 block_TPS22918_Q1.gif

导通电阻与输入电压间的关系
典型值

TPS22918-Q1 D001_SLVSD76.gif
IOUT = -200mA

4 修订历史记录

Changes from A Revision (July 2016) to B Revision

  • 向特性 部分添加了提供功能安全的链接Go

Changes from * Revision (July 2016) to A Revision

  • 已将器件状态由“产品预览”更改为“量产数据”Go

5 Pin Configuration and Functions

DBV Package
6-Pin SOT-23
Top View
TPS22918-Q1 PinOut_DBV-6_SLVSD76.gif

Pin Functions

PIN TYPE DESCRIPTION
NO. NAME
1 VIN I Switch input. Place ceramic bypass capacitor(s) between this pin and GND. See the Detailed Descriptionsection for more information
2 GND — Device ground
3 ON I Active high switch control input. Do not leave floating
4 CT O Switch slew rate control. Can be left floating. See the Feature Description section for more information
5 QOD O Quick Output Discharge pin. This functionality can be enabled in one of three ways
  • Placing an external resistor between VOUT and QOD
  • Tying QOD directly to VOUT and using the internal resistor value (RPD)
  • Disabling QOD by leaving pin disconnected
See the Quick Output Discharge (QOD) section for more information
6 VOUT O Switch output

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)(2)
MIN MAX UNIT
VIN Input voltage –0.3 6 V
VOUT Output voltage –0.3 6 V
VON ON voltage –0.3 6 V
IMAX Maximum continuous switch current, TA = 70°C (3) 2 A
IMAX Maximum continuous switch current, TA = 85°C (3) 1.5 A
IPLS Maximum pulsed switch current, pulse < 300 µs, 2% duty cycle 2.5 A
TJ Maximum junction temperature 150 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to network ground terminal.
(3) Assumes 12-K power-on hours at 100% duty cycle. This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms and conditions for TI's semiconductor products.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2000 V
Charged-device model (CDM), per AEC Q100-011 ±750
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VIN Input voltage 1 5.5 V
VON ON voltage 0 5.5 V
VOUT Output voltage VIN V
VIH, ON High-level input voltage, ON VIN = 1 V to 5.5 V 1 5.5 V
VIL, ON Low-level input voltage, ON VIN = 1 V to 5.5 V 0 0.5 V
TA Operating free-air temperature (1) –40 105 °C
CIN Input Capacitor 1 (2) µF
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(MAX)], the maximum power dissipation of the device in the application [PD(MAX)], and the junction-to-ambient thermal resistance of the part-package in the application (θJA), as given by the following equation: TA(MAX) = TJ(MAX) – (θJA × PD(MAX)).
(2) See the Application and Implementation section.

6.4 Thermal Information

THERMAL METRIC (1) TPS22918-Q1 UNIT
DBV (SOT-23)
6 PINS
RθJA Junction-to-ambient thermal resistance 183.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 151.6 °C/W
RθJB Junction-to-board thermal resistance 34.1 °C/W
ψJT Junction-to-top characterization parameter 37.2 °C/W
ψJB Junction-to-board characterization parameter 33.6 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Unless otherwise noted, the specification in the following table applies over the following operating ambient temperature
–40°C ≤ TA ≤ +105°C (full). Typical values are for TA = 25°C.
PARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT
IQ, VIN Quiescent current VON = 5 V, IOUT = 0 A VIN = 5.5 V –40°C to +105°C 9.2 16 µA
VIN = 5 V 8.7 16
VIN = 3.3 V 8.3 15
VIN = 1.8 V 10.2 17
VIN = 1.2 V 9.3 16
VIN = 1 V 8.9 15
ISD, VIN Shutdown current VON = 0 V, VOUT = 0 V VIN = 5.5 V –40°C to +105°C 0.5 5 µA
VIN = 5 V –40°C to +105°C 0.5 4.5
VIN = 3.3 V –40°C to +105°C 0.5 3.5
VIN = 1.8 V –40°C to +105°C 0.5 2.5
VIN = 1.2 V –40°C to +105°C 0.4 2
VIN = 1 V –40°C to +105°C 0.4 2
ION ON pin input leakage current VIN = 5.5 V, IOUT = 0 A –40°C to +105°C 0.1 µA
RON On-Resistance VIN = 5.5 V, IOUT = –200 mA 25°C 51 59 mΩ
–40°C to +105°C 78
VIN = 5 V, IOUT = –200 mA 25°C 52 59
–40°C to +105°C 79
VIN = 4.2 V, IOUT = –200 mA 25°C 52 59
–40°C to +105°C 79
VIN = 3.3 V, IOUT = –200 mA 25°C 53 59
–40°C to +105°C 80
VIN = 2.5 V, IOUT = –200 mA 25°C 53 61
–40°C to +105°C 80
VIN = 1.8 V, IOUT = –200 mA 25°C 55 65
–40°C to +105°C 88
VIN = 1.2 V, IOUT = –200 mA 25°C 64 77
–40°C to +105°C 104
VIN = 1 V, IOUT = –200 mA 25°C 71 85
–40°C to +105°C 116
VHYS ON pin hysteresis VIN = 1 V to 5.5 V –40°C to +105°C 107 mV
RPD Output pull down resistance VIN = 5 V, VON = 0 V 25°C 24 Ω
–40°C to +105°C 30
VIN = 3.3 V, VON = 0 V 25°C 25
–40°C to +105°C 35
VIN = 1.8 V, VON = 0 V 25°C 45
–40°C to +105°C 60

6.6 Switching Characteristics

See timing test circuit in Figure 21 (unless otherwise noted) for references to external components used for the test condition in the switching characteristics table. Switching characteristics shown below are only valid for the power-up sequence where VIN is already in steady state condition before the ON pin is asserted high. Test Conditions: VON = 5 V, TA = 25°C.
PARAMETER TEST CONDITION MIN TYP MAX UNIT
VIN = 5 V
tON Turnon time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 1950 µs
tOFF Turnoff time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 2 µs
tR VOUT rise time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 2540 µs
tF VOUT fall time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 2 µs
tD Delay time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 690 µs
VIN = 3.3 V
tON Turnon time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 1430 µs
tOFF Turnoff time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 2 µs
tR VOUT rise time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 1680 µs
tF VOUT fall time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 2 µs
tD Delay time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 590 µs
VIN = 1.8 V
tON Turnon time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 965 µs
tOFF Turnoff time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 2 µs
tR VOUT rise time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 960 µs
tF VOUT fall time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 2 µs
tD Delay time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 480 µs
VIN = 1 V
tON Turnon time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 725 µs
tOFF Turnoff time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 3 µs
tR VOUT rise time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 560 µs
tF VOUT fall time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 2 µs
tD Delay time RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF, CT = 1000 pF 430 µs

6.7 Typical DC Characteristics

TPS22918-Q1 D002_SLVSD76.gif
VON = 5 V IOUT = 0 A
Figure 1. Quiescent Current vs Input Voltage
TPS22918-Q1 D004_SLVSD76.gif
VON = 5 V IOUT = –200 mA
Figure 3. On-Resistance vs Temperature
TPS22918-Q1 D005_SLVSD76.gif
VON = 5 V TA = 25°C
Figure 5. On-Resistance vs Output Current
TPS22918-Q1 D009_SLVSD76.gif
VIN = VOUT VON = 0 V
Figure 7. Output Pull-Down Resistance vs Input Voltage
TPS22918-Q1 D003_SLVSD76.gif
VON = 0 V IOUT = 0 A
Figure 2. Shutdown Current vs Input Voltage
TPS22918-Q1 D001_SLVSD76.gif
VON = 5 V IOUT = –200 mA
Figure 4. On-Resistance vs Input Voltage
TPS22918-Q1 D008_SLVSD76.gif
IOUT = 0 A
Figure 6. Hysteresis Voltage vs Input Voltage

6.8 Typical AC Characteristics

TPS22918-Q1 D010_SLVSD76.gif
CIN = 1 µF RL = 10 Ω CL = 0.1 µF
CT = 1000 pF
Figure 8. Rise Time vs Input Voltage
TPS22918-Q1 D012_SLVSD76.gif
CIN = 1 µF RL = 10 Ω CL = 0.1 µF QOD = Open
Figure 10. Fall Time vs Input Voltage
TPS22918-Q1 D014_SLVSD76.gif
CIN = 1 µF RL = 10 Ω CL = 0.1 µF CT =1000 pF
Figure 12. Turnon Time vs Input Voltage
TPS22918-Q1 918_Off Time_VIN=5V_CT=1000pF.png
VIN = 5 V CIN = 1 µF CL = 0.1 µF
RL = 10 Ω QOD = Open
Figure 14. Fall Time (tF) at VIN = 5 V
TPS22918-Q1 918_Off Time_VIN=3.3V_CT=1000pF.png
VIN = 3.3 V CIN = 1 µF CL = 0.1 µF
RL = 10 Ω QOD = Open
Figure 16. Fall Time (tF) at VIN = 3.3 V
TPS22918-Q1 918_Off Time_VIN=1.8V_CT=1000pF.png
VIN = 1.8 V CIN = 1 µF CL = 0.1 µF
RL = 10 Ω QOD = Open
Figure 18. Fall Time (tF) at VIN = 1.8 V
TPS22918-Q1 918_Off Time_VIN=1V_CT=1000pF.png
VIN = 1.0 V CIN = 1 µF CL = 0.1 µF
RL = 10 Ω QOD = Open
Figure 20. Fall Time (tF) at VIN = 1 V
TPS22918-Q1 D011_SLVSD76.gif
CIN = 1 µF RL = 10 Ω CL = 0.1 µF
Figure 9. Delay Time vs Input Voltage
TPS22918-Q1 D013_SLVSD76.gif
CIN = 1 µF RL = 10 Ω CL = 0.1 µF
Figure 11. Turnoff Time vs Input Voltage
TPS22918-Q1 918_On Time_VIN=5V_CT=1000pF.png
VIN = 5 V CIN = 1 µF CL = 0.1 µF
RL = 10 Ω CT = 1000 pF
Figure 13. Rise Time (tR) at VIN = 5 V
TPS22918-Q1 918_On Time_VIN=3.3V_CT=1000pF.png
VIN = 3.3 V CIN = 1 µF CL = 0.1 µF
RL = 10 Ω CT = 1000 pF
Figure 15. Rise Time (tR) at VIN = 3.3 V
TPS22918-Q1 918_On Time_VIN=1.8V_CT=1000pF.png
VIN = 1.8 V CIN = 1 µF CL = 0.1 µF
RL = 10 Ω CT = 1000 pF
Figure 17. Rise Time (tR) at VIN = 1.8 V
TPS22918-Q1 918_On Time_VIN=1V_CT=1000pF.png
VIN = 1.0 V CIN = 1 µF CL = 0.1 µF
RL = 10 Ω CT = 1000 pF
Figure 19. Rise Time (tR) at VIN = 1 V

7 Parameter Measurement Information

TPS22918-Q1 section_81.gif
1. Rise and fall times of the control signal is 100 ns.
2. Turnoff times and fall times are dependent on the time constant at the load. For TPS22918-Q1, the internal pull-down resistance RPD is enabled when the switch is disabled. The time constant is (RQOD || RL) × CL where RQOD equals RPD + REXT.
Figure 21. Test Circuit
TPS22918-Q1 time_wave_slvsco0.gifFigure 22. Timing Waveforms

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale