TUSB211 是一款 USB 高速 (HS) 信号调节器,专为补偿传输通道中的 ISI 信号损失而设计。
该器件采用了对 USB 低速 (LS) 和全速 (FS) 信号无感知的设计,该设计正在申请专利。LS 和 FS 信号特征不受 TUSB211 的影响。该器件只能对 HS 信号进行补偿。
该器件具有可编程的信号增益,可精调器件性能,从而对连接器上的高速信号进行优化。这对于通过 USB 高速电气兼容性测试很有帮助。
TUSB211 的封装不会损坏 DP/DM 信号路径的连续性。这样一来,便可以针对完整 USB 通道实现零风险系统设计。
此外,TUSB211 符合 USB On-The-Go (OTG) 和电池充电 (BC) 协议。
部件号 | 封装 | 封装尺寸(标称值) |
---|---|---|
TUSB211 | X2QFN (12) | 1.60mm x 1.60mm |
TUSB211I |
Changes from C Revision (June 2016) to D Revision
Changes from A Revision (June 2015) to B Revision
Changes from * Revision (May 2015) to A Revision
PIN | I/O | INTERNAL PULLUP/PULLDOWN |
DESCRIPTION | |
---|---|---|---|---|
NAME | NO. | |||
VCC | 12 | P | N/A | 3.3-V power |
VREG | 11 | O | RSTN asserted: 30 kΩ PD | 1.8-V LDO output. Only enabled when operating in High Speed mode. Requires 0.1-µF external capacitor to GND to stabilize the core. |
FS, LS mode: 30 kΩ PD | ||||
HS mode: N/A | ||||
GND | 10 | P | N/A | Ground |
RSTN | 5 | I | 500 kΩ PU | Device disable/enable. Recommend 0.1-µF external capacitor to GND to ensure clean power on reset if not driven. |
EQ | 6 | I | N/A | USB High Speed boost select via external pull down resistor. Sampled upon power up. Auto selects min EQ when left floating. Does not recognize real time adjustments. |
D1P | 2 | I/O | N/A | USB High Speed positive port. Orientation independent – Can face either upstream or downstream. |
D1M | 1 | I/O | N/A | USB High Speed negative port. Orientation independent – Can face either upstream or downstream. |
D2P | 7 | I/O | N/A | USB High Speed positive port. Orientation independent – Can face either upstream or downstream. |
D2M | 8 | I/O | N/A | USB High Speed negative port. Orientation independent – Can face either upstream or downstream. |
TEST | 3 | I | RSTN asserted: 500 kΩ PD | No function. Leave floating. |
ENA_HS | 9 | O | RSTN asserted: 500kΩ PD | Flag indicating that channel is in High Speed mode. Asserted upon:
De-asserted upon detection of disconnect or suspend. Can be left floating if not needed. |
CD | 4 | O | RSTN asserted: 500 kΩ PD | Flag indicating that a USB device is attached. Asserted from an unconnected state upon detection of DP or DM pull-up resistor. De-asserted upon detection of disconnect. Can be left floating if not needed. |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Supply voltage range | VCC | –0.3 | 3.8 | V |
Voltage range | D1P, D1M, D2P, D2M, RSTN, EQ | –0.3 | 3.8 | V |
Storage temperature, Tstg | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) | ±3000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) | ±1000 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
VCC | Supply voltage | 3 | 3.3 | 3.6 | V |
TA | Operating free-air temperature [TUSB211] | 0 | 70 | °C | |
Operating free-air temperature [TUSB211I] | –40 | 85 |
THERMAL METRIC (1) | RWB | UNIT | |
---|---|---|---|
12 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 161.6 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 63.3 | °C/W |
RθJB | Junction-to-board thermal resistance | 75.1 | °C/W |
ψJT | Junction-to-top characterization parameter | 1.9 | °C/W |
ψJB | Junction-to-board characterization parameter | 75.1 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | N/A | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP (1) | MAX | UNIT | |
---|---|---|---|---|---|---|
I(ACTIVE_HS) | High Speed Active Current | USB channel = HS mode. 480 Mbps traffic. VCC supply stable | 16 | 20 | mA | |
I(IDLE_HS) | High Speed Idle Current | USB channel = HS mode. No traffic. VCC supply stable | 12 | 15 | mA | |
I(SUSPEND_HS) | Suspend Current | USB channel = Suspend mode. | 4.5 | 5.5 | mA | |
I(FS) | Full-Speed Current | USB channel = FS mode | 4.5 | 5.5 | mA | |
I(LS) | Low-Speed Current | USB channel = LS mode | 4.5 | 5.5 | mA | |
I(DISCONN) | Disconnect Power | Host side application. No device attachment. | 4.5 | 5.5 | mA | |
I(RSTN) | Disable Power | RSTN driven low; VCC supply stable; VCC = 3.3 V | 4.5 | 5.5 | mA | |
RSTN | ||||||
VIH | High level input voltage | 2 | VCC | V | ||
VIL | Low-level input voltage | 0 | 0.8 | V | ||
IIH | High level input current | VIH = 3.6 V, VCC = 3 V, RPU enabled | ±2 | µA | ||
IIL | Low level input current | VIL = 0V, VCC = 3.6 V, RPU enabled | ±11 | µA | ||
EQ | ||||||
R(EQ) | External pulldown resistor | Level 0 EQ | 0.32 | kΩ | ||
Level 1 EQ | 1.4 | 2.2 | kΩ | |||
Level 2 EQ [MAX] | 3.7 | 4.1 | kΩ | |||
Level 3 EQ [MIN] | 6 | kΩ | ||||
CD, ENA_HS | ||||||
VOH | High level output voltage | IO = –50 µA | 2.4 | V | ||
VOL | Low level output voltage | IO = 50 µA | 0.4 | V | ||
DxP, DxM | ||||||
T(SHRT_GND) | DP, DM low voltage short circuit | DxP or DxM short circuited to GND continuously for 24 hours at TA = 25°C only |
0 | V | ||
CIO(DXX) | Capacitance to GND | Measured with LCR meter and device powered down. 1 MHz sinusoid, 30 mVpp ripple | 5 | pF |
PARAMETER | TEST CONDITIONS | MIN | TYP (1) | MAX | UNIT | |
---|---|---|---|---|---|---|
DxP, DxM | ||||||
F(BR_DXX) | Bit Rate | USB channel = HS mode. 480 Mbps traffic. VCC supply stable | 480 | Mbps | ||
t(R/F_DXX) | Rise/Fall time | 100 | ps | |||
CD, ENA_HS | ||||||
t(EN) | Enable time | 20 | µs | |||
t(DIS) | Disable time | 20 | µs | |||
VCC | ||||||
t(STABLE) | VCC stable before RSTN de-assertion | 100 | µs | |||
t(RAMP) | VCC ramp time | 0.2 | 100 | ms |
The TUSB211 is a USB High-Speed (HS) signal conditioner, designed to compensate for ISI signal loss in a transmission channel. TUSB211 has a patent-pending design which is agnostic to USB Low Speed (LS) and Full Speed (FS) signals and does not alter their signal characteristics, while HS signals are compensated. In addition, the design is compatible with USB On-The-Go (OTG) and Battery Charging (BC) specifications.
Programmable signal gain through an external resistor permits fine tuning device performance to optimize signals helping to pass USB HS electrical compliance tests at the connector.
The footprint of TUSB211 allows a board layout using this device such that it does not break the continuity of the DP/DM signal traces. This permits risk free system design of a complete USB channel with flexible use of one or multiple TUSB211 devices as needed for optimal signal integrity. This allows system designers to plan for this device and use it only if signal integrity analysis and/or lab measurements show a need. If such a need is not warranted, the device can be left unpopulated without any board rework.
TUSB211 automatically detects a LS connection and does not enable signal compensation. CD pin is asserted high.
TUSB211 automatically detects a FS connection and does not enable signal compensation. CD pin is asserted high.
TUSB211 automatically detects a HS connection and enables signal compensation as determined by the configuration of the external pulldown resistance on its EQ pin. ENA_HS pin asserted high in addition to the CD pin.
TUSB211 can be disabled when its RSTN pin is asserted low. The USB channel is still fully operational, but there is neither signal compensation, nor any indication from the CD pin or ENA_HS pin as to the status of the channel.
NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.
The primary purpose of the TUSB211 is to re-store the signal integrity of a USB High Speed channel up to the USB connector. The loss in signal quality stems from reduced channel bandwidth due to high loss PCB trace and other components that contribute a capacitive load. This can cause the channel to fail the USB near end eye mask. Proper use of the TUSB211 can help to pass this eye mask.
A secondary purpose is to use the CD pin and ENA_HS pin of the TUSB211 to control other blocks on the customer platform if so desired.
A typical application is shown below. In this setup, D1P and D1M face the USB connector while D2P and D2M face the USB transceiver. If desired, the orientation may be reversed [that is, D1 faces transceiver and D2 faces connector].
Note that CD and ENA_HS are connected to PLDs. This is for platforms where other circuit blocks must be modified based on the status of the USB channel. They could also be connected to LEDs to give a physical indication of current channel status for debug purposes. If neither use is desired, they can be left floating.
TUSB211 requires a valid reset signal as described in the power supply recommendations section. The capacitor C4 is not required if a microcontroller drives the RSTN pin according to recommendations.
Pin 11 VREG is an internal LDO output that requires a 0.1 μF external capacitor to GND to stabilize the core.
Pin 6 EQ requires an external pulldown resistor if EQ levels 0-2 are needed. If EQ level 3 is needed, then the EQ pin can be left floating.
The ideal EQ setting is dependent upon the signal chain loss characteristics of the target platform. The general recommendation is to start with EQ level 0, and then increment to EQ level 1, and so on. if permissible.
In order for the TUSB211 to recognize any change to the EQ setting, the RSTN pin must be toggled. This is because the EQ pin is latched on power up and the pin is ignored thereafter.
In addition, TUSB211 does not compensate for any DC attenuation in the signal path. Therefore, minimizing DC loss (that is, resistance) in the system design, is suggested. As a consequence, this might lead to increased line capacitance. This is acceptable because the TUSB211 can compensate for the additional capacitive load.
Placement of the device is also dependent on the application goal. Table 1 summarizes the recommendations.
PLATFORM GOAL | SUGGESTED TUSB211 PLACEMENT |
---|---|
Pass USB Near End Mask | Close to measurement point |
Pass USB Far End Eye Mask | Close to USB PHY |
Cascade multiple 211s to improve device enumeration | Midway between each USB interconnect |
NOTE
USB-IF certification tests for High Speed eye masks require the mandated use of the USB-IF developed test fixtures. These test fixtures do not require the use of oscilloscope probes. Instead they use SMA cables. More information can be found at the USB-IF Compliance Updates Page. It is located under the ‘Electricals’ section, ID 86 dated March 2013.
The following procedure must be followed before using any oscilloscope compliance software to construct a USB High Speed Eye Mask:
On power up, the interaction of the RSTN pin and power on ramp could result in digital circuits not being set correctly. The device should not be enabled until the power on ramp has settled to 3 V or higher to guarantee a correct power on reset of the digital circuitry. If RSTN cannot be held low by microcontroller or other circuitry until the power on ramp has settled, then an external capacitor from the RSTN pin to GND is required to hold the device in the low power reset state.
The RC time constant should be larger than five times of the power on ramp time (0 to VCC). With a typical internal pullup resistance of 500 kΩ, the recommended minimum external capacitance is calculated as:
There is no need to break the USB signal trace. Thus, even with the TUSB211 powered down, or not populated, the USB link is still fully operational. To avoid the need for signal vias, routing the High Speed traces directly underneath the TUSB211 package, as illustrated in the PCB land pattern shown in Figure 8, is recommended.
Although the land pattern shown below has matched trace width to pad width, optimal impedance control is based on the user's own PCB stack-up. It is recommended to maintain 90 Ω differential routing underneath the device.
All dimensions are in millimetres (mm).
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件以及立即订购快速访问。
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全措施。
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它知识产权方面的许可。
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI及其代理造成的任何损失。
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。
只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949要求,TI不承担任何责任。
德州仪器在线技术支持社区: www.deyisupport.com
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122
Copyright© 2016, 德州仪器半导体技术(上海)有限公司