TPS6305x 系列器件是一款静态电流较低的高效降压/升压转换器 , 适用于输入电压高于或低于输出电压的应用。
在升压模式下,持续输出电流最高可达 500mA;在降压模式下,持续输出最高可达 1A。最大平均开关电流限制为 1A(典型值)。TPS6305x 系列器件在整个输入电压范围内针对输出电压进行稳压操作,可根据输入电压自动切换为降压或升压模式,从而在两种模式之间实现无缝转换。
该降压/升压转换器基于使用同步整流的固定频率 PWM 控制器,可实现最高效率。在负载电流较低的情况下,该转换器进入节能模式,从而在整个负载电流范围内保持高效率。
用户可以通过脉频调制 (PFM)/PWM 引脚选择自动 PFM/PWM 工作模式或强制 PWM 工作模式。在 PWM 模式下通常使用 2.5MHz 固定频率。使用一个外部电阻分压器可对输出电压进行编程,或者在芯片上对输出电压进行内部固定。转换器可被禁用以最大限度地减少电池消耗。在关断期间,负载从电池上断开。该器件采用 12 引脚芯片尺寸球状引脚栅格阵列 (DSBGA) 封装和 12 引脚 HotRod 封装。
器件型号 | 封装 | 封装尺寸(标称值) |
---|---|---|
TPS63050
TPS63051 |
DSBGA (12) | 1.56mm x 1.16mm |
VQFN (12) | 2.50mm x 2.50mm |
Changes from C Revision (July 2015) to D Revision
Changes from B Revision (April 2015) to C Revision
Changes from A Revision (February 2014) to B Revision
Changes from * Revision (July 2013) to A Revision
PART NUMBER (1) | VOUT | |
---|---|---|
TPS63050 | Adjustable | |
TPS63051 | 3.3 V |
PIN | I/O | DESCRIPTION | ||
---|---|---|---|---|
NAME | WCSP | HotRod | ||
EN | A3 | 11 | I | Enable input. (1 enabled, 0 disabled). It must not be left floating |
FB | D2 | 5 | I | Voltage feedback of adjustable versions, must be connected to VOUT on fixed output voltage versions1 |
GND | B1 | 2,9 | Ground for Power stage and Control stage | |
ILIM0 | B2 | 10 | I | Programmable inrush current limit input works together with lLIM1. See table on page 1.
It must not be left floating |
ILIM1 | B3 | See (1) | I | Programmable inrush current limit input works together with lLIM0.
See 效率与输出电流间的关系 on page 1. Do not leave floating |
L1 | A1 | 1 | Connection for Inductor | |
L2 | C1 | 3 | Connection for Inductor | |
PFM/PWM | C2 | 6 | I | 0 for PFM mode 1 for forced PWM mode. It must not be left floating |
PG | C3 | 8 | O | Power good open drain output |
SS | D3 | 7 | I | Adjustable Soft-Start. If left floating default soft-start time is set |
VIN | A2 | 12 | I | Supply voltage for power stage and control stage |
VOUT | D1 | 4 | O | Buck-boost converter output |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Voltage(1) | VIN, L1, EN, VOUT, FB, VINA, PFM/PWM | –0.3 | 7 | V |
L2(2) | –0.3 | 7 | ||
L2(3) | –0.3 | 9.5 | ||
Operating junction temperature, TJ | –40 | 150 | °C | |
Operating ambient temperature, TA | –40 | 85 | °C | |
Storage temperature, Tstg | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±1500 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±700 |
See (1) | MIN | NOM | MAX | UNIT | |
---|---|---|---|---|---|
VIN | Input voltage | 2.5 | 5.5 | V | |
IOUT | Output current | 0.5 | A | ||
L | Inductance(3) | 1 | 1.5 | 2.2 | µH |
COUT | Output capacitance(2) | 10 | µF | ||
TA | Operating ambient temperature | –40 | 85 | °C | |
TJ | Operating virtual junction temperature | –40 | 125 | °C |
THERMAL METRIC(1) | TPS6305x | UNIT | ||
---|---|---|---|---|
WCSP | RMW | |||
12 PINS | 12 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 89.9 | 37.3 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 0.7 | 30.4 | °C/W |
RθJB | Junction-to-board thermal resistance | 43.9 | 8.0 | °C/W |
ψJT | Junction-to-top characterization parameter | 2.9 | 0.4 | °C/W |
ψJB | Junction-to-board characterization parameter | 43.7 | 7.8 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | n/a | 2.5 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |||
---|---|---|---|---|---|---|---|---|
SUPPLY | ||||||||
VIN | Input voltage range | 2.5 | 5.5 | V | ||||
VIN_Min | Minimum input voltage to turn on in full load | IOUT = 500 mA | 2.7 | V | ||||
IOUT | Output current(3) | ILIM0 = VIH, ILIM1 = VIH, | 500 | mA | ||||
IQ | Quiescent current (2) | VIN | IOUT = 0 mA, EN = VIN = 3.6 V,
VOUT = 3.3 V |
43 | 65 | μA | ||
VOUT | IOUT = 0 mA, EN = VIN = 3.6 V,
VOUT = 3.3 V |
10 | ||||||
Isd | Shutdown current (2) | EN = 0 V | 0.1 | 1 | μA | |||
UVLOTH | Undervoltage lockout threshold | VIN falling | 1.6 | 1.7 | 1.8 | V | ||
UVLOhys | Undervoltage lockout hysteresis | 200 | mV | |||||
TSD | Thermal shutdown | Temperature rising | 140 | °C | ||||
TSD(hys) | Thermal shutdown hysteresis | 20 | °C | |||||
LOGIC SIGNALS EN, ILIM0, ILIM1 | ||||||||
VIH | High level input voltage | VIN = 2.5 V to 5.5 V | 1.2 | V | ||||
VIL | Low level voltage Input Voltage | VIN = 2.5 V to 5.5 V | 0.3 | V | ||||
Ilkg | Input leakage current | PFM / PWM, EN, ILIM0, ILIM1 = GND or VIN | 0.01 | 0.1 | μA | |||
POWER GOOD | ||||||||
VOL | Low level voltage | Isink = 100 μA | 0.3 | V | ||||
IPG | PG sinking current | V = 0.3 V | 0.1 | mA | ||||
Ilkg | Input leakage current | VPG = 3.6 V | 0.01 | 0.1 | μA | |||
OUTPUT | ||||||||
VOUT | Output voltage range | 2.5 | 5.5 | V | ||||
VFB | TPS63050 feedback regulation voltage | 0.8 | V | |||||
VFB | TPS63050 feedback voltage accuracy | PWM mode | –1.1% | 1.1% | ||||
VFB | TPS63050 feedback voltage accuracy(1) | PFM mode | –1% | 3% | ||||
VOUT | TPS63051 output voltage accuracy | PWM mode | 3.27 | 3.3 | 3.34 | V | ||
VOUT | TPS63051 output voltage accuracy(1) | PFM mode | 3.27 | 3.3 | 3.39 | V | ||
IPWM->PFM | Minimum output current to enter PFM mode | VIN = 3 V; VOUT = 3.3 V | 150 | mA | ||||
IFB | TPS63050 feedback input bias current | VFB = 0.8 V | 10 | 100 | nA | |||
RDS(on) | Input high-side FET on-resistance | ISW = 500 mA | 145 | mΩ | ||||
Output high-side FET on-resistance | ISW = 500 mA | 95 | mΩ | |||||
Input low-side FET on-resistance | ISW = 500 mA | 170 | mΩ | |||||
Output low-side FET on-resistance | ISW = 500 mA | 115 | mΩ | |||||
IIN_MAX | Input current-limit boost mode | ILIM0 = VIH, ILIM1 = VIH,VIN = 2.7 V to 3 V, VOUT = 3 V | 480 | 1240 | mA | |||
ILIM0 = VIH, ILIM1 = VIH,VIN = 2.7 V to 3.3 V, VOUT = 3.3 V, | 550 | 1400 | mA | |||||
ILIM0 = VIH, ILIM1 = VIH,VIN = 2.7 V to 4.5 V, VOUT = 4.5 V, | 630 | 1950 | mA | |||||
ISS_IN | Programmable inrush current limit(4) | ILIM0 = VIL, ILIM1 = VIL,
VIN = 3 V,VOUT = 3.3 V, (Available for DBGA only) |
0.4×IIN_MAX | mA | ||||
ILIM0 = VIH, ILIM1 = VIL,
VIN = 3 V,VOUT = 3.3 V, (Available for DBGA only) |
0.5×IIN_MAX | |||||||
ILIM0 = VIL, ILIM1 = VIH,
VIN = 3 V,VOUT = 3.3 V |
0.65×IIN_MAX | |||||||
ILIM0 = VIH, ILIM1 = VIH,
VIN = 3 V,VOUT = 3.3 V |
IIN_MAX | |||||||
ISS | Soft-start current TPS63051 | 1 | μA | |||||
ISS | Soft-start current TPS63050 | 3.2 | μA | |||||
Line regulation | VIN = 2.5 V to 5.5 V, IOUT = 500 mA, PWM mode | 0.963 | mV/V | |||||
Load regulation | VIN = 3.6 V, IOUT = 0 mA to 500 mA, PWM mode | 4 | mV/A |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |||
---|---|---|---|---|---|---|---|---|
OUTPUT | ||||||||
fs | Switching frequency | 2.5 | MHz | |||||
tSS | Softstart time | VOUT = EN = low to high, SS = floating, Buck mode VIN = 3.6 V, VOUT = 3.3 V, IOUT = 500 mA(4) | 280 | µs | ||||
VOUT = EN = low to high, SS = floating, Boost mode VIN = 2.5 V, VOUT = 3.3 V, IOUT = 500 mA(4) | 600 | |||||||
td | Start up delay | Time from when EN = high to when device starts switching | 100 | µs |
VOUT = 3.3 V |
The TPS6305x devices use 4 internal N-channel MOSFETs to maintain synchronous power conversion at all possible operating conditions. This enables the device to keep high efficiency over the complete input voltage and output power range. To regulate the output voltage at all possible input voltage conditions, the device automatically switches from buck operation to boost operation and back as required by the configuration. It always uses one active switch, one rectifying switch, one switch held on, and one switch held off. Therefore, it operates as a buck converter when the input voltage is higher than the output voltage, and as a boost converter when the input voltage is lower than the output voltage. There is no mode of operation in which all 4 switches are switching at the same time. Keeping one switch on and one switch off eliminates their switching losses. The RMS current through the switches and the inductor is kept at a minimum, to minimize switching and conduction losses. Controlling the switches this way allows the converter to always keep higher efficiency.
The device provides a seamless transition from buck to boost or from boost to buck operation.