• Menu
  • Product
  • Email
  • PDF
  • Order now
  • TPS81256 3W 高效升压转换器,采用 MicroSiP封装

    • ZHCS996D June   2012  – February 2018 TPS81256

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • TPS81256 3W 高效升压转换器,采用 MicroSiP封装
  1. 1 特性
  2. 2 应用
  3. 3 说明
    1.     Device Images
      1.      典型应用
      2.      效率与负载电流间的关系
  4. 4 修订历史记录
  5. 5 Device Options
  6. 6 Pin Configuration and Functions
    1.     Pin Functions
  7. 7 Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Operation
      2. 8.3.2 Power-Save Mode
      3. 8.3.3 Current Limit Operation, Maximum Output Current
    4. 8.4 Device Functional Modes
      1. 8.4.1 Softstart, Enable
      2. 8.4.2 Load Disconnect and Reverse Current Protection
      3. 8.4.3 Undervoltage Lockout
      4. 8.4.4 Thermal Regulation
      5. 8.4.5 Thermal Shutdown
  9. 9 Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Output Capacitor Selection CEXT
        2. 9.2.2.2 Input Capacitor Selection
      3. 9.2.3 Application Curves
    3. 9.3 System Examples
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Surface Mount Information
    4. 11.4 Thermal and Reliability Information
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 第三方产品免责声明
    2. 12.2 社区资源
    3. 12.3 商标
    4. 12.4 静电放电警告
    5. 12.5 Glossary
  13. 13机械、封装和可订购信息
  14. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

TPS81256 3W 高效升压转换器,采用 MicroSiP封装

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 运行频率为 4MHz 时,效率 91%
  • 2.5V 至 5.5V 的宽输入电压范围
  • VOUT=5.0V,VIN≥3.3V 时,IOUT≥550mA
  • 5.0V 固定输出电压
  • 总直流电压精度为 ±2%
  • 43µA 电源电流
  • 同类产品中最佳的线路和负载瞬态
  • VIN≥ VOUT 运行
  • 低纹波轻负载脉冲频率调制 (PFM) 模式
  • 关断期间的真正负载断开
  • 热关断和过载保护
  • 高度低于 1mm 的解决方案
  • 总体解决方案尺寸 < 9mm2
  • 9 引脚 MicroSiP 封装

2 应用

  • 手机、智能电话、平板电脑
  • 单声道和立体声 APA 应用
  • USB-OTG、HDMI 应用
  • USB 充电端口 (5V)

3 说明

TPS81256 器件是一个完整的 MicroSiP 直流/直流升压电源解决方案,适用于电池供电的便携式 应用。封装中包括开关稳压器、电感器和输入/输出电容器。只需一个极小的额外输出电容器即可完成此设计。

TPS81256 是一款基于高频同步升压直流/直流转换器而构建的器件,经优化可适用于电池供电的便携式 应用。

该直流/直流转换器可在 4MHz 的稳定开关频率下工作,可在轻负载电流时进入省电模式,以保持整个负载电流范围内的高效率。

PFM 模式可在轻负载工作时将电源电流降至 43μA(典型值),从而延长电池使用寿命。TPS81256 适用于低功耗 应用,在整个锂离子电池电压范围内支持 3W 以上的输出功率。关断模式下的输入电流低于 1µA(典型值),最大程度地延长了电池寿命。

由于只需很少的外部组件,TPS81256 提供了一个小于 9mm2 的极小解决方案尺寸。此解决方案采用一个紧凑型 (2.6mm x 2.9mm) 且低厚度 (1.0mm) 的球状引脚栅格阵列 (BGA) 封装,此封装适合用于采用标准表面贴装设备的自动组装。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
TPS81256 µSIP (9) 2.925mm × 2.575mm
  1. 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

Device Images

典型应用

TPS81256 app_cir_fp_sip2_lvsaz9.gif

效率与负载电流间的关系

TPS81256 effB_io_lvsaz9.gif

4 修订历史记录

Changes from C Revision (February 2016) to D Revision

  • 更新了封装图Go

Changes from B Revision (February 2015) to C Revision

  • 调换了 D & E 尺寸以与“机械数据”制图相匹配;并将说明中的“8 凸点”改为 “9 凸点”。Go
  • Added 社区资源 部分Go

Changes from A Revision (August 2013) to B Revision

  • 添加了器件信息和 ESD 额定值表、特性 说明 部分、器件功能模式、应用和实施部分、系统示例、电源建议部分、器件和文档支持部分以及机械、封装和可订购信息部分。Go
  • Changed the pinout drawing to match the device orientation shown on the MECHANICAL DATA drawing. Go
  • Changed 更改了 SIP 封装“俯视图”图像方向,使“YML LSB”符号和引脚 A1 正确匹配。Go

Changes from * Revision (June 2012) to A Revision

  • Added animated performance characteristics tableGo
  • Deleted MLCC capacitor B1 life documentationGo

5 Device Options

PART NUMBER(1) OUTPUT VOLTAGE PACKAGE MARKING
CHIP CODE
TPS81256 5.0V TT
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

6 Pin Configuration and Functions

SIP Package
9-Pin µSIP
TPS81256 po_image_81256_lvsaz9.gif

Pin Functions

PIN I/O DESCRIPTION
NAME NO.
EN B2 I This is the enable pin of the device. Connecting this pin to ground forces the device into shutdown mode. Pulling this pin high enables the device. This pin must not be left floating and must be terminated.
GND A1, A2, B1 Ground pin.
VIN C1, C2 I Power supply input.
VOUT A3, B3, C3 O Boost converter output.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Input voltage Voltage at VIN(2), VOUT(2), EN(2) –0.3 6 V
Input current Continuous average current into VIN(3) 1.05 A
Pulsed current into VIN(4) 1.3 A
Power dissipation Internally limited
Operating temperature, TA(3)(4)(5) –40 85 °C
Operating virtual junction temperature, TJ –40 150 °C
Storage temperature, Tstg –55 125 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to network ground terminal.
(3) Limit the junction and the (top side) inductor case temperature to 110°C, limit the (top side) capacitor case temperature to 85°C for 2000h operation at maximum output power. Contact TI for more details on lifetime estimation.
(4) Limit the (top side) inductor case temperature to 140°C and the (top side) capacitor temperature to 115°C for 100h operation. Contact TI for more details on lifetime estimation.
(5) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA(max)) is dependent on the maximum operating junction temperature (TJ(max)), the maximum power dissipation of the device in the application (PD(max)), and the junction-to-ambient thermal resistance of the part/package in the application (θJA), as given by the following equation: TA(max)= TJ(max)–(θJA X PD(max)). To achieve optimum performance, it is recommended to operate the device with a maximum junction temperature of 125°C, a maximum inductor case temperature of 125°C and a maximum capacitor case temperature of 85°C.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±1000
Machine Model - (MM) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VI Input voltage range 2.5 5.5 V
RL Minimum resistive load for start-up (VI ≤ 4.8V) 65 Ω
CEXT Output capacitance 2 30 µF
TA Ambient temperature –40 85 °C
TJ Operating junction temperature –40 125 °C
TCASE_IND Operating inductor case temperature 125 °C
TCASE_CAP Operating capacitor case temperature 85 °C

7.4 Thermal Information

THERMAL METRIC(1) TPS81256 UNIT
µSIP (SIP) – 9 PINS
RθJA Junction-to-ambient thermal resistance 62 °C/W
ψJB Junction-to-board characterization parameter 31
ψJT Junction-to-case (top) thermal resistance –
(1) Thermal data have been simulated with high-K board (per JEDEC standard).

7.5 Electrical Characteristics

Minimum and maximum values are at VIN = 2.5V to 5.5V, VOUT = 5.0V (or VIN, whichever is higher), EN = 1.8V, TA = –40°C to 85°C; Circuit of Parameter Measurement Information section (unless otherwise noted). Typical values are at VIN = 3.6V, VOUT = 5.0V, EN = 1.8V, TA = 25°C (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENT
IQ Operating quiescent current into VIN(1) IOUT = 0mA, VOUT = 5.0V, VIN = 3.6V
EN = VIN
Device not switching
30 50 µA
Operating quiescent current into VOUT(1) 7 20 µA
ISD Shutdown current(1) EN = GND 0.85 5.0 μA
VUVLO Under-voltage lockout threshold Falling 2.0 2.1 V
Hysteresis 0.1 V
ENABLE
VIL Low-level input voltage 0.4 V
VIH High-level input voltage 1.0 V
Ilkg Input leakage current Input connected to GND or VIN 0.5 µA
OUTPUT
VOUT Regulated DC output voltage 2.5V ≤ VIN ≤ 4.85V, IOUT = 0mA
PWM operation. Open Loop
4.92 5 5.08 V
3.3V ≤ VIN ≤ 4.85V, 0mA ≤ IOUT ≤ 550mA
PFM/PWM operation
4.85 5 5.2 V
2.9V ≤ VIN ≤ 4.85V, 0mA ≤ IOUT ≤ 450mA
PFM/PWM operation
4.85 5 5.2 V
ΔVOUT Power-save mode output ripple voltage PFM operation, IOUT = 1mA 35 mVpk
PWM mode output ripple voltage PWM operation, IOUT = 200mA 8 mVpk
POWER SWITCH
rDS(on) Input-to-output On-resistance VI = 5.25 V. Device not switching 320 mΩ
Ilkg Reverse leakage current into VOUT(1) EN = GND 5 µA
ILIM Average input current limit EN = VIN. VIN = 3.3V 1180 mA
Overtemperature protection 140 °C
Overtemperature hysteresis 20 °C
OSCILLATOR
fOSC Oscillator frequency VIN = 3.6V, VOUT = 5.0V, IOUT = 500mA 4 MHz
TIMING
Start-up time IOUT = 0mA
Time from active EN to start switching
70 µs
IOUT = 0mA
Time from active EN to VOUT
400 µs
(1) Maximum values can vary over lifetime due to intrinsic capacitor ageing effects. For more details, refer to Thermal and Reliability Information section.

7.6 Typical Characteristics

Table 1. Table of Graphs

FIGURE
η Efficiency vs Output current Figure 1, Figure 3
vs Input voltage Figure 2
VO DC output voltage vs Output current Figure 4, Figure 5, Figure 6
vs Input voltage Figure 7
IO Maximum output current vs Input voltage Figure 8
ΔVO Peak-to-peak output ripple voltage vs Output current Figure 8
ICC Supply current vs Input voltage Figure 10
ILIM Input current vs Output current Figure 11

Table 2. Table of Animated Performance Characteristics

VIDEO
AC Load Response vs. Input Voltage Video 1
Load Transient Response (10mA to 400mA) vs. Input Voltage Video 2
Load Transient Response (to 400mA) vs. Base Load Current (2.9VIN) Video 3
vs. Base Load Current (3.6VIN) Video 4
vs. Base Load Current (4.2VIN) Video 5
Start-Up Response vs. Delay to Load Current (2.9VIN) Video 6
vs. Delay to Load Current (3.6VIN) Video 7
vs. Delay to Load Current (4.2VIN) Video 8
Start-Up Response (200mA IOUT) vs. Input Voltage Video 9
Overload Response vs. Input Voltage Video 10
TPS81256 eff1_io_lvsaz9.gifFigure 1. Efficiency vs Output Current
TPS81256 eff2a_io_lvsaz9.gifFigure 3. Efficiency vs Output Current
TPS81256 vo2_io_lvsaz9.gifFigure 5. DC Output Voltage vs Output Current
TPS81256 vo_vi_lvsaz9.gifFigure 7. DC Output Voltage vs Input Voltage
TPS81256 vo_ripp_io_lvsaz9.gifFigure 9. Peak-To-Peak Output Ripple Voltage vs Output Current
TPS81256 iin_io_lvsaz9.gif
Figure 11. Input Current vs Output Current
TPS81256 eff_vi_lvsaz9.gifFigure 2. Efficiency vs Input Voltage
TPS81256 vo_io_lvsaz9.gifFigure 4. DC Output Voltage vs Output Current
TPS81256 vo3_io_lvsaz9.gifFigure 6. DC Output Voltage vs Output Current
TPS81256 io_vi_lvsaz9.gifFigure 8. Maximum Output Current vs Input Voltage
TPS81256 sup_vi_lvsaz9.gifFigure 10. Supply Current vs Input Voltage

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale