SNVS521K December   2007  – August 2014 LP2998 , LP2998-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Simplified Schematic
  5. Revision History
  6. Pin Configuration and Functions
    1. 6.1 Pin Descriptions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings: LP2998
    3. 7.3 Handling Ratings: LP2998-Q1
    4. 7.4 Recommended Operating Conditions
    5. 7.5 Thermal Information
    6. 7.6 Electrical Characteristics
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Input Capacitor
      2. 9.1.2 Output Capacitor
      3. 9.1.3 Thermal Dissipation
    2. 9.2 Typical Application
      1. 9.2.1 DDR-III Applications
      2. 9.2.2 DDR-II Applications
      3. 9.2.3 SSTL-2 Applications
      4. 9.2.4 Level Shifting
        1. 9.2.4.1 Output Capacitor Selection
      5. 9.2.5 HSTL Applications
      6. 9.2.6 QDR Applications
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Examples
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings (1)(2)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
AVIN to GND −0.3 6 V
PVIN to GND –0.3 AVIN V
VDDQ(3) −0.3 6 V
Junction temperature 150 °C
Lead temperature (soldering, 10 sec) 260 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
(3) VDDQ voltage must be less than 2 x (AVIN - 1) or 6V, whichever is smaller.

7.2 Handling Ratings: LP2998

MIN MAX UNIT
Tstg Storage temperature range −65 150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) −1000 1000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Handling Ratings: LP2998-Q1

MIN MAX UNIT
Tstg Storage temperature range −65 150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1) −1000 1000 V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. The LP2998-Q1 is rated at AEC-Q100 ESD HBM Classification Level H1C.

7.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Junction temperature(1) –40 125 °C
AVIN to GND 2.2 5.5 V
PVIN supply voltage 0 AVIN V
SD input voltage 0 AVIN V

7.5 Thermal Information

THERMAL METRIC(1) LP2998/LP2998-Q1 LP2998 UNIT
SO PowerPAD SOIC
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 43 151 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.6 Electrical Characteristics

Typical limits tested at TJ = 25°C. Minimum and maximum limits apply over the full operating junction temperature range (TJ = –40°C to 125°C).(2) Unless otherwise specified, AVIN = PVIN = 2.5 V, VDDQ = 2.5 V.(3)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VREF VREF voltage (DDR I) VIN = VDDQ = 2.3 V 1.135 1.158 1.185 V
VIN = VDDQ = 2.5 V 1.235 1.258 1.285
VIN = VDDQ = 2.7 V 1.335 1.358 1.385
VREF voltage (DDR II) PVIN = VDDQ = 1.7 V 0.837 0.860 0.887
PVIN = VDDQ = 1.8 V 0.887 0.910 0.937
PVIN = VDDQ = 1.9 V 0.936 0.959 0.986
VREF Voltage (DDR III) PVIN = VDDQ = 1.35V 0.669 0.684 0.699
PVIN = VDDQ = 1.5V 0.743 0.758 0.773
PVIN = VDDQ = 1.6V 0.793 0.808 0.823
ZVREF VREF Output Impedance IREF = –30 to 30 µA 2.5
VTT VTT Output Voltage (DDR I) (6) IOUT = 0 A V
 VIN = VDDQ = 2.3 V 1.120 1.159 1.190
 VIN = VDDQ = 2.5 V 1.210 1.259 1.290
 VIN = VDDQ = 2.7 V 1.320 1.359 1.390
IOUT = ±1.5 A
 VIN = VDDQ = 2.3 V 1.125 1.159 1.190
 VIN = VDDQ = 2.5 V 1.225 1.259 1.290
 VIN = VDDQ = 2.7 V 1.325 1.359 1.390
VTT Output Voltage (DDR II) (6) IOUT = 0 A, AVIN = 2.5 V V
 PVIN = VDDQ = 1.7 V 0.822 0.856 0.887
 PVIN = VDDQ = 1.8 V 0.874 0.908 0.939
 PVIN = VDDQ = 1.9 V 0.923 0.957 0.988
IOUT = ±0.5A, AVIN = 2.5 V
 PVIN = VDDQ = 1.7 V 0.820 0.856 0.890
 PVIN = VDDQ = 1.8 V 0.870 0.908 0.940
 PVIN = VDDQ = 1.9 V 0.920 0.957 0.990
VTT Output Voltage (DDR III) (6) IOUT = 0A, AVIN = 2.5 V V
PVIN = VDDQ = 1.35V 0.656 0.677 0.698
PVIN = VDDQ = 1.5 V 0.731 0.752 0.773
PVIN = VDDQ = 1.6 V 0.781 0.802 0.823
IOUT = 0.2 A, AVIN = 2.5V
PVIN = VDDQ = 1.35V
0.667 0.688 0.710
IOUT = -0.2A, AVIN = 2.5V
PVIN = VDDQ = 1.35V
0.641 0.673 0.694
IOUT = 0.4 A, AVIN = 2.5 V
PVIN = VDDQ = 1.5 V
0.740 0.763 0.786
IOUT = –0.4 A, AVIN = 2.5 V
PVIN = VDDQ = 1.5 V
0.731 0.752 0.773
IOUT = 0.5 A, AVIN = 2.5 V
PVIN = VDDQ = 1.6 V
0.790 0.813 0.836
IOUT = –0.5 A, AVIN = 2.5 V
PVIN = VDDQ = 1.6 V
0.781 0.802 0.823
VOSVtt VTT Output Voltage Offset (VREF – VTT) for DDR I (6) IOUT = 0 A –30 0 30 mV
IOUT = –1.5 A –30 0 30
IOUT = 1.5 A –30 0 30
VTT Output Voltage Offset (VREF – VTT) for DDR II (6) IOUT = 0 A –30 0 30
IOUT = –0.5 A –30 0 30
IOUT = 0.5 A –30 0 30
VTT Output Voltage Offset (VREF – VTT) for DDR III (6) IOUT = 0 A –30 0 30
IOUT = ±0.2 A –30 0 30
IOUT = ±0.4 A –30 0 30
IOUT = ±0.5 A –30 0 30
IQ Quiescent Current (4) IOUT = 0 A 320 500 µA
ZVDDQ VDDQ Input Impedance 100
ISD Quiescent current in shutdown (4) SD = 0 V 115 150 µA
IQ_SD Shutdown leakage current SD = 0 V 2 5
VIH Minimum Shutdown High Level 1.9 V
VIL Maximum Shutdown Low Level 0.8
Iv VTT leakage current in shutdown SD = 0 V
VTT = 1.25 V
1 10 µA
ISENSE VSENSE Input current 13 nA
TSD Thermal Shutdown (5) 165 °C
TSD_HYS Thermal Shutdown Hysteresis 10
(1) At elevated temperatures, devices must be derated based on thermal resistance.
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate Texas Instruments' Average Outgoing Quality Level (AOQL).
(3) VIN is defined as VIN = AVIN = PVIN.
(4) Quiescent current defined as the current flow into AVIN.
(5) The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(MAX), the junction to ambient thermal resistance, RθJA, and the ambient temperature, TA. Exceeding the maximum allowable power dissipation will cause excessive die temperature and the regulator will go into thermal shutdown.
(6) VTT load regulation is tested by using a 10 ms current pulse and measuring VTT.

7.7 Typical Characteristics

Unless otherwise specified AVIN = PVIN = 2.5 V.
20057520.gif
Figure 1. IQ vs AVIN In SD
20057522.gif
Figure 3. VIH and VIL
20057524.gif
Figure 5. VREF vs VDDQ
30026927.gif
Figure 7. ISD vs AVIN Over Temperature
20057531.gif
VDDQ = 2.5 V PVIN = 1.8 V
Figure 9. Maximum Sourcing Current vs AVIN
20057533.gif
VDDQ = 2.5 V PVIN = 3.3 V
Figure 11. Maximum Sourcing Current vs AVIN
20057535.gif
VDDQ = 1.8 V PVIN = 1.8 V
Figure 13. Maximum Sourcing Current vs AVIN
20057537.gif
VDDQ = 1.8 V PVIN = 3.3 V
Figure 15. Maximum Sourcing Current vs AVIN
20057521.gif
Figure 2. IQ vs AvIN
20057523.gif
Figure 4. VREF vs IREF
20057526.gif
Figure 6. VTT vs VDDQ
30026928.gif
Figure 8. IQ vs AVIN Over Temperature
20057532.gif
VDDQ = 2.5 V PVIN = 2.5 V
Figure 10. Maximum Sourcing Current vs AVIN
20057534.gif
VDDQ = 2.5 V
Figure 12. Maximum Sinking Current vs AVIN
20057536.gif
VDDQ = 1.8 V
Figure 14. Maximum Sinking Current vs AVIN