SLUUCO5A december   2022  – august 2023 BQ34Z100-R2

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Trademarks
  3. Introduction
  4. Data Commands
    1. 2.1 Standard Data Commands
      1. 2.1.1  Control(): 0x00/0x01
        1. 2.1.1.1  CONTROL_STATUS: 0x0000
        2. 2.1.1.2  DEVICE TYPE: 0x0001
        3. 2.1.1.3  FW_VERSION: 0x0002
        4. 2.1.1.4  HW_VERSION: 0x0003
        5. 2.1.1.5  RESET_DATA: 0x0005
        6. 2.1.1.6  PREV_MACWRITE: 0x0007
        7. 2.1.1.7  CHEM ID: 0x0008
        8. 2.1.1.8  BOARD_OFFSET: 0x0009
        9. 2.1.1.9  CC_OFFSET: 0x000A
        10. 2.1.1.10 CC_OFFSET_SAVE: 0x000B
        11. 2.1.1.11 DF_VERSION: 0x000C
        12. 2.1.1.12 SET_FULLSLEEP: 0x0010
        13. 2.1.1.13 STATIC_CHEM_DF_CHKSUM: 0x0017
        14. 2.1.1.14 SEALED: 0x0020
        15. 2.1.1.15 IT ENABLE: 0x0021
        16. 2.1.1.16 CAL_ENABLE: 0x002D
        17. 2.1.1.17 RESET: 0x0041
        18. 2.1.1.18 EXIT_CAL: 0x0080
        19. 2.1.1.19 ENTER_CAL: 0x0081
        20. 2.1.1.20 OFFSET_CAL: 0x0082
      2. 2.1.2  StateOfCharge(): 0x02
      3. 2.1.3  MaxError(): 0x03
      4. 2.1.4  RemainingCapacity(): 0x04/0x05
      5. 2.1.5  FullChargeCapacity(): 0x06/07
      6. 2.1.6  Voltage(): 0x08/0x09
      7. 2.1.7  AverageCurrent(): 0x0A/0x0B
      8. 2.1.8  Temperature(): 0x0C/0x0D
      9. 2.1.9  Flags(): 0x0E/0x0F
      10. 2.1.10 FlagsB(): 0x12/0x13
      11. 2.1.11 Current(): 0x10/0x11
    2. 2.2 Extended Data Commands
      1. 2.2.1  AverageTimeToEmpty(): 0x18/0x19
      2. 2.2.2  AverageTimeToFull(): 0x1A/0x1B
      3. 2.2.3  PassedCharge(): 0x1C/0x1D
      4. 2.2.4  DOD0Time(): 0x1E/0x1F
      5. 2.2.5  VoltScale(): 0x20
      6. 2.2.6  CurrScale(): 0x21
      7. 2.2.7  EnegyScale(): 0x22
      8. 2.2.8  AvailableEnergy(): 0x24/0x25
      9. 2.2.9  AveragePower(): 0x26/0x27
      10. 2.2.10 SerialNumber(): 0x28/0x29
      11. 2.2.11 InternalTemperature(): 0x2A/0x2B
      12. 2.2.12 CycleCount(): 0x2C/0x2D
      13. 2.2.13 StateOfHealth(): 0x2E/0x2F
      14. 2.2.14 ChargeVoltage(): 0x30/0x31
      15. 2.2.15 ChargeCurrent(): 0x32/0x33
      16. 2.2.16 PackConfiguration(): 0x3A/0x3B
      17. 2.2.17 DesignCapacity(): 0x3C/0x3D
      18. 2.2.18 DataFlashClass(): 0x3E
      19. 2.2.19 DataFlashBlock(): 0x3F
      20. 2.2.20 AuthenticateData/BlockData(): 0x40…0x53
      21. 2.2.21 AuthenticateChecksum/BlockData(): 0x54
      22. 2.2.22 BlockData(): 0x55…0x5F
      23. 2.2.23 BlockDataChecksum(): 0x60
      24. 2.2.24 BlockDataControl(): 0x61
      25. 2.2.25 GridNumber(): 0x62
      26. 2.2.26 LearnedStatus(): 0x63
      27. 2.2.27 Dod@Eoc(): 0x64/0x65
      28. 2.2.28 QStart(): 0x66/0x67
      29. 2.2.29 TrueRC(): 0x68/0x69
      30. 2.2.30 TrueFCC(): 0x6A/0x6B
      31. 2.2.31 StateTime(): 0x6C/0x6D
      32. 2.2.32 QmaxPassedQ(): 0x6E/0x6F
      33. 2.2.33 DOD0(): 0x70/0x71
      34. 2.2.34 QmaxDod0(): 0x72/0x73
      35. 2.2.35 QmaxTime(): 0x74/0x75
      36. 2.2.36 Data Flash Interface
        1. 2.2.36.1 Accessing Data Flash
        2. 2.2.36.2 Manufacturer Information Block
        3. 2.2.36.3 Access Modes
        4. 2.2.36.4 Sealing/Unsealing Data Flash Access
  5. Fuel Gauging
    1. 3.1  Overview
    2. 3.2  Impedance Track Variables
      1. 3.2.1  Load Mode
      2. 3.2.2  Load Select
      3. 3.2.3  Reserve Cap-mAh
      4. 3.2.4  Reserve Cap-mWh/cWh
      5. 3.2.5  Energy Scale
      6. 3.2.6  Dsg Current Threshold
      7. 3.2.7  Chg Current Threshold
      8. 3.2.8  Quit Current, Dsg Relax Time, Chg Relax Time, and Quit Relax Time
      9. 3.2.9  Qmax
      10. 3.2.10 Update Status
      11. 3.2.11 Avg I Last Run
      12. 3.2.12 Avg P Last Run
      13. 3.2.13 Cell Delta Voltage
      14. 3.2.14 Ra Tables
      15. 3.2.15 StateOfCharge() Smoothing
      16. 3.2.16 Charge Efficiency
      17. 3.2.17 Lifetime Data Logging
    3. 3.3  Device Configuration
      1. 3.3.1 Pack Configuration Register
      2. 3.3.2 Pack Configuration B Register
      3. 3.3.3 Pack Configuration C Register
    4. 3.4  Voltage Measurement and Calibration
      1. 3.4.1 1S Example
      2. 3.4.2 7S Example
      3. 3.4.3 Autocalibration
    5. 3.5  Temperature Measurement
    6. 3.6  Overtemperature Indication
      1. 3.6.1 Overtemperature: Charge
      2. 3.6.2 Overtemperature: Discharge
    7. 3.7  Charging and Charge Termination Indication
    8. 3.8  The Scale Factors
    9. 3.9  LED Display
    10. 3.10 Alert Signal
    11. 3.11 Fast Resistance Scaling
      1. 3.11.1 Calculation of Resistance Scale
      2. 3.11.2 Negative Resistance Scale
      3. 3.11.3 Reset of Resistance Scale
      4. 3.11.4 Fast Resistance Scaling Configuration
  6. Communications
    1. 4.1 Authentication
    2. 4.2 Key Programming
    3. 4.3 Executing an Authentication Query
    4. 4.4 HDQ Single-Pin Serial Interface
    5. 4.5 I2C Interface
    6. 4.6 Switching Between I2C and HDQ Modes
      1. 4.6.1 Converting to HDQ Mode
      2. 4.6.2 Converting to I2C Mode
  7. Device Functional Modes
    1. 5.1 NORMAL Mode
    2. 5.2 SLEEP Mode
    3. 5.3 FULL SLEEP Mode
  8. Power Control
    1. 6.1 Reset Functions
    2. 6.2 Wake-Up Comparator
    3. 6.3 Flash Updates
  9. Data Flash Summary
  10. Gas Gauge Timing Considerations
    1. 8.1 Gauging Effects on I2C Transactions
    2. 8.2 HDQ Bus Effects on Gauging
    3. 8.3 Gauging Effects on HDQ Transactions
    4. 8.4 Manufacturer Timing Notes
  11. HDQ Communication Basics
    1. 9.1 Basic HDQ Protocol
    2. 9.2 Break
    3. 9.3 Basic Timing
    4. 9.4 Reading 16-Bit Words
    5. 9.5 Host Processor Interrupts Using Discrete I/O Port for HDQ
    6. 9.6 Using UART Interface to HDQ
  12. 10Procedures to Seal and Unseal the Gauge
    1. 10.1 Unseal the Gauge to UNSEALED Mode
    2. 10.2 Unseal the Gauge to FULL ACCESS Mode
    3. 10.3 Seal the Gauge
  13. 11Impedance Track Gauge Configuration
    1. 11.1 Introduction
    2. 11.2 Determining ChemID
    3. 11.3 Learning Cycle
    4. 11.4 Common Problems Seen During the Learning Cycle
    5. 11.5 Test Gauge and Optimize
    6. 11.6 Finalize Golden File
    7. 11.7 Program and Test the PCB
  14. 12Revision History

Using UART Interface to HDQ

An implementation option for HDQ is to use a UART. An advantage to using the UART is that if the UART is handling the communication and storing the results in a buffer, host processor interrupts during the communication do not affect the timing of the HDQ communication with the HDQ target. Use of the UART for HDQ communication requires that each word sent to or received from the UART is only a single bit of the HDQ data or address. The procedure is to set the UART baud rate to 57,600 with no parity and two stop bits. This yields a data word with 11 bits total (start bit, eight data bits, and two stop bits). At a baud rate of 57,600 (17.3 μs per bit), this is a total communication time of 190.9 µs and meets the required HDQ bit timing of 190 µs minimum. If data of 0xFE is sent to the UART, the transmitted data is low for 34.6 µs and then high for the remaining bit time and is interpreted by the HDQ target as a 1. If data of 0xC0 is sent to the UART, the transmitted data is low for 121.5 μs and then high for the remaining bit time and is interpreted by the HDQ target as a 0. When data is sent to the host from the HDQ target, the received data could be interpreted as either 0xFE or 0xFC if a logic 1 is sent, or either 0xF0, 0xE0, 0xC0, 0x80, or 0x00 if a logic 0 is sent. A simple test of the received data determines the received data bit. If the received data is greater than 0xF8, the data bit should be interpreted as a logic 1, and if less than or equal to 0xF8, the data bit should be interpreted as a logic 0. This analysis assumes the UART samples the received data approximately half-way through each of the 17.3-μs UART bit times, and that capacitive loading on the HDQ line may delay the rise time of the data a few microseconds.

Note that the TX and RX of the UART must be tied together because HDQ is a single-wire interface. In case the TX output is not an open-drain output, it needs to be converted to an open-drain output, as shown in Figure 9-5.

Note:

Any data sent out to the HDQ target is also received by the UART; therefore, if 8 bits of an address are sent and then 8 bits of data from the HDQ target are received from that address, the UART inputs 16 bytes of data into the UART data buffer. The host needs to skip the first 8 bytes, which contain the command word sent to the HDQ target and use the second 8 bytes of data.

GUID-F05E85E2-3AC1-4882-8C6C-94C3C9C8BDE6-low.gifFigure 9-5 HDQ Communication Using UART Without Open-Drain Output