TPS737xx-Q1 线性低压降 (LDO) 稳压器系列在电压跟随器配置中使用了 NMOS 旁路元件。该拓扑结构对输出电容值和等效串联电阻 (ESR) 的敏感度相对较低,从而实现多种负载配置。即使使用 1µF 的小型陶瓷输出电容器,也能实现出色的负载瞬态响应。NMOS 拓扑结构也可实现极低压降。
TPS737xx-Q1 系列利用先进的 BiCMOS 工艺实现高精度,同时提供极低的压降和低接地引脚电流。未启用时的电流消耗低于 20nA,适用于便携式 应用。这些器件受到热关断和折返电流限制的保护。
器件型号 | 封装 | 封装尺寸(标称值) |
---|---|---|
TPS737-Q1 | VSON (8) | 3.00mm × 3.00mm |
Changes from A Revision (July 2016) to B Revision
Changes from * Revision (December 2008) to A Revision
PIN | I/O | DESCRIPTION | |
---|---|---|---|
NAME | NO. | ||
EN | 5 | I | Driving the enable pin (EN) high turns on the regulator. Driving this pin low puts the regulator into shutdown mode. See Enable Pin and Shutdown for more details. EN must not be left floating and can be connected to IN if not used. |
FB | 3 | I | Adjustable voltage version only. This is the input to the control loop error amplifier, and it is used to set the output voltage of the device. |
GND | 4, Pad | G | Ground |
IN | 8 | I | Unregulated input supply |
NR | 3 | — | Fixed voltage versions only. Connecting an external capacitor to this pin bypasses noise generated by the internal bandgap, reducing output noise to very low levels. |
OUT | 1 | O | Regulator output. A 1-µF or larger capacitor of any type is required for stability. |
NC | 2, 6, 7 | — | No internal connection |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Input supply voltage | –0.3 | 6 | V | |
Enable voltage | –0.3 | 6 | V | |
Output voltage | –0.3 | 5.5 | V | |
Input voltage | NR or FB pin | –0.3 | 6 | V |
Peak output current | Internally limited | |||
Output short-circuit duration | Indefinite | |||
Junction temperature range, TJ | –55 | 150 | °C | |
Storage temperature, Tstg | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | ±2000 | V |
Charged-device model (CDM), per AEC Q100-011 | ±500 |
MIN | MAX | UNIT | ||
---|---|---|---|---|
VIN | Input supply voltage | 2.2 | 5.5 | V |
IOUT | Output current | 0 | 1 | A |
TJ | Operating junction temperature | –40 | 125 | °C |
THERMAL METRIC(1) | TPS737xx-Q1 | UNIT | |
---|---|---|---|
DRB (VSON) | |||
8 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 52.2 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 59.4 | °C/W |
RθJB | Junction-to-board thermal resistance | 19.3 | °C/W |
ψJT | Junction-to-top characterization parameter | 2 | °C/W |
ψJB | Junction-to-board characterization parameter | 19.3 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | 11.8 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VIN | Input voltage range(1)(2) | 2.2 | 5.5 | V | |||
VFB | Internal reference (TPS73701) | TJ = 25°C | 1.192 | 1.2 | 1.216 | V | |
VOUT | Output voltage range (TPS73701)(3) | VFB | 5.5 – VDO | V | |||
Accuracy(1)(4) | Nominal | TJ = 25°C | –1 | 1 | % | ||
5.36 V < VIN < 5.5 V, VOUT = 5.08 V,
10 mA < IOUT < 800 mA, –40°C < TJ < 85°C, TPS73701 |
–2 | 2 | |||||
Over VIN, IOUT, and temperature | VOUT + 0.5 V ≤ VIN ≤ 5.5 V,
10 mA ≤ IOUT ≤ 1 A |
–3 | ±0.5 | 3 | |||
ΔVOUT% / ΔVIN | Line regulation(1) | VOUT(nom) + 0.5 V ≤ VIN ≤ 5.5 V | 0.01 | %/V | |||
ΔVOUT% / ΔIOUT | Load regulation | 1 mA ≤ IOUT ≤ 1 A | 0.002 | %/mA | |||
10 mA ≤ IOUT ≤ 1 A | 0.0005 | ||||||
VDO | Dropout voltage(5)
(VIN = VOUT(nom) – 0.1 V) |
IOUT = 1 A | 130 | 500 | mV | ||
ZO(DO) | Output impedance in dropout | 2.2 V ≤ VIN ≤ VOUT + VDO | 0.25 | Ω | |||
ICL | Output current limit | VOUT = 0.9 × VOUT(nom) | 1.05 | 1.6 | 2.2 | A | |
ISC | Short-circuit current | VOUT = 0 V | 450 | mA | |||
IREV | Reverse leakage current(6)(–IIN) | VEN ≤ 0.5 V, 0 V ≤ VIN ≤ VOUT | 0.1 | µA | |||
IGND | GND pin current | IOUT = 10 mA (IQ) | 400 | µA | |||
IOUT = 1 A | 1300 | ||||||
ISHDN | Shutdown current (IGND) | VEN ≤ 0.5 V, VOUT ≤ VIN ≤ 5.5 V | 20 | nA | |||
IFB | FB pin current (TPS73701) | 0.1 | 0.6 | µA | |||
PSRR | Power-supply rejection ratio (ripple rejection) | f = 100 Hz, IOUT = 1 A | 58 | dB | |||
f = 10 kHz, IOUT = 1 A | 37 | ||||||
VN | Output noise voltage
BW = 10 Hz to 100 kHz |
COUT = 10 µF | 27 × VOUT | µVRMS | |||
tSTR | Startup time | VOUT = 3 V, RL = 30 Ω, COUT = 1 µF | 600 | µs | |||
VEN(HI) | EN pin high (enabled) | 1.7 | VIN | V | |||
VEN(LO) | EN pin low (shutdown) | 0 | 0.5 | V | |||
IEN(HI) | EN pin current (enabled) | VEN = 5.5 V | 20 | nA | |||
TSD | Thermal shutdown temperature | Shutdown, temperature increasing | 160 | °C | |||
Reset, temperature decreasing | 140 | ||||||
TJ | Operating junction temperature | –40 | 125 | °C |
The TPS737xx-Q1 belongs to a family of new generation LDO regulators that use an NMOS pass transistor to achieve ultra-low-dropout performance, reverse current blockage, and freedom from output capacitor constraints. These features combined with an enable input make the TPS737xx-Q1 ideal for portable applications. This regulator family offers a wide selection of fixed output voltage versions and an adjustable output version. All versions have thermal and over-current protection, including foldback current limit.
VOUT | R1 | R2 |
---|---|---|
1.2 V | Short | Open |
1.5 V | 23.2 kΩ | 95.3 kΩ |
1.8 V | 28.kΩ | 56.2 kΩ |
2.5 V | 39.2 kΩ | 36.5 kΩ |
2.8 V | 44.2 kΩ | 33.2 kΩ |
3 V | 46.4 kΩ | 33.2 kΩ |
3.3 V | 52.3 kΩ | 30.1 kΩ |
A precision bandgap reference is used to generate the internal reference voltage (VREF). This reference is the dominant noise source within the TPS737xx-Q1 and it generates approximately 32 µVRMS (10 Hz to 100 kHz) at the reference output (NR). The regulator control loop adds gain to the reference noise with the same gain as the reference voltage, so that the noise voltage of the regulator is approximately given by Equation 1.
Because the value of VREF is 1.2 V, this relationship reduces to:
for the case of no CNR.
An internal 27-kΩ resistor in series with the noise reduction pin (NR) forms a low-pass filter for the voltage reference when an external noise reduction capacitor (CNR) is connected from NR to ground. The total noise in the 10-Hz to 100-kHz bandwidth is reduced by a factor of approximately 3.2 for CNR = 10 nF, giving the approximate relationship for CNR = 10 nF in Equation 3.
This noise reduction effect is shown in Figure 18.
The TPS737xx-Q1 uses an internal charge pump to develop an internal supply voltage sufficient to drive the gate of the NMOS pass element above VOUT. The charge pump generates approximately 250 µV of switching noise at approximately 4 MHz, however, charge-pump noise contribution is negligible at the output of the regulator for most values of IOUT and COUT.
The TPS737xx-Q1 internal current limit helps protect the regulator during fault conditions. Foldback current limit helps to protect the regulator from damage during output short-circuit conditions by reducing current limit when VOUT drops below 0.5 V. See Figure 10.