SLVS667B July 2006 – January 2016 TPS65022
PRODUCTION DATA.
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| VI | Input voltage range on all pins except AGND and PGND pins with respect to AGND | –0.3 | 7 | V |
| Current at VINDCDC1, L1, PGND1, VINDCDC2, L2, PGND2, VINDCDC3, L3, PGND3 | 2000 | mA | ||
| Peak current at all other pins | 1000 | mA | ||
| TA | Operating free-air temperature | –40 | 85 | °C |
| TJ | Maxiumum junction temperature | 125 | °C | |
| Tstg | Storage temperature | –65 | 150 | °C |
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
| Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±500 | |||
| MIN | NOM | MAX | UNIT | ||
|---|---|---|---|---|---|
| VCC | Input voltage range step-down convertors (VINDCDC1, VINDCDC2, VINDCDC3); pins need to be tied to the same voltage rail |
2.5 | 6 | V | |
| VO | Output voltage range for VDCDC1 step-down convertor(1) | 0.6 | VINDCDC1 | V | |
| Output voltage range for VDCDC2 (mem) step-down convertor(1) | 0.6 | VINDCDC2 | |||
| Output voltage range for VDCDC3 (core) step-down convertor(1) | 0.6 | VINDCDC3 | |||
| VI | Input voltage range for LDOs (VINLDO1, VINLDO2) | 1.5 | 6.5 | V | |
| VO | Output voltage range for LDOs (VLDO1, VLDO2) | 1 | VINLDO1-2 | V | |
| IO(DCDC2) | Output current at L1 | 1200 | mA | ||
| Inductor at L1(2) | 2.2 | 3.3 | μH | ||
| CI(DCDC1) | Input capacitor at VINDCDC1 (2) | 10 | μF | ||
| CO(DCDC1) | Output capacitor at VDCDC1 (2) | 10 | 22 | μF | |
| IO(DCDC2) | Output current at L2 | 1000 | mA | ||
| Inductor at L2 (2) | 2.2 | 3.3 | μH | ||
| CI(DCDC2) | Input capacitor at VINDCDC2 (2) | 10 | μF | ||
| CO(DCDC2) | Output capacitor at VDCDC2 (2) | 10 | 22 | μF | |
| IO(DCDC3) | Output current at L3 | 900 | mA | ||
| Inductor at L3 (2) | 2.2 | 3.3 | μH | ||
| CI(DCDC3) | Input capacitor at VINDCDC3(2) | 10 | μF | ||
| CO(DCDC3) | Output capacitor at VDCDC3 (2) | 10 | 22 | μF | |
| CI(VCC) | Input capacitor at VCC (2) | 1 | μF | ||
| Ci(VINLDO) | Input capacitor at VINLDO (2) | 1 | μF | ||
| CO(VLDO1-2) | Output capacitor at VLDO1, VLDO2 (2) | 2.2 | μF | ||
| IO(VLDO1-2) | Output current at VLDO1, VLDO2 | 200 | mA | ||
| CO(VRTC) | Output capacitor at VRTC (2) | 4.7 | μF | ||
| TA | Operating ambient temperature | –40 | 85 | °C | |
| TJ | Operating junction temperature | –40 | 125 | °C | |
| Resistor from VINDCDC3, VINDCDC2, VINDCDC1 to VCC used for filtering(3) | 1 | 10 | Ω | ||
| THERMAL METRIC(1) | TPS65022 | UNIT | |
|---|---|---|---|
| RHA (VQFN) | |||
| 40 PINS | |||
| RθJA | Junction-to-ambient thermal resistance | 31.6 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 18.2 | °C/W |
| RθJB | Junction-to-board thermal resistance | 6.6 | °C/W |
| ψJT | Junction-to-top characterization parameter | 0.2 | °C/W |
| ψJB | Junction-to-board characterization parameter | 6.5 | °C/W |
| RθJC(bot) | Junction-to-case (bottom) thermal resistance | 1.7 | °C/W |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |||
|---|---|---|---|---|---|---|---|---|
| CONTROL SIGNALS : SCLK, SDAT (input), DCDC1_EN, DCDC2_EN, DCDC3_EN, LDO_EN, DEFLDO1, DEFLDO2 | ||||||||
| VIH | High level input voltage | Rpullup at SCLK and SDAT = 4.7 kΩ, pulled to VRTC | 1.3 | VCC | V | |||
| VIL | Low level input voltage | Rpullup at SCLK and SDAT = 4.7 kΩ, pulled to VRTC | 0 | 0.4 | V | |||
| IH | Input bias current | 0.01 | 0.1 | μA | ||||
| CONTROL SIGNALS : HOT_RESET | ||||||||
| VIH | High level input voltage | 1.3 | VCC | V | ||||
| VIL | Low level input voltage | 0 | 0.4 | V | ||||
| IIB | Input bias current | 0.01 | 0.1 | μA | ||||
| tdeglitch | Deglitch time at HOT_RESET | 25 | 30 | 35 | ms | |||
| CONTROL SIGNALS : LOWBAT, PWRFAIL, RESPWRON, INT, SDAT (output) | ||||||||
| VOH | High level output voltage | 6 | V | |||||
| VOL | Low level output voltage | IIL = 5 mA | 0 | 0.3 | V | |||
| Duration of low pulse at RESPWRON | External capacitor 1 nF | 100 | ms | |||||
| ICONST | internal charge and discharge current on pin TRESPWRON | used for generating RESPWRON delay | 1.7 | 2 | 2.3 | μA | ||
| TRESPWRON_LOWTH | internal lower comparator threshold on pin TRESPWRON | used for generating RESPWRON delay | 0.225 | 0.25 | 0.275 | V | ||
| TRESPWRON_UPTH | internal upper comparator threshold on pin TRESPWRON | used for generating RESPWRON delay | 0.97 | 1 | 1.103 | V | ||
| Resetpwron threshold | VRTC falling | –3% | 2.4 | 3% | V | |||
| Resetpwron threshold | VRTC rising | –3% | 2.52 | 3% | V | |||
| ILK | leakage current | output inactive high | 0.1 | μA | ||||
| SUPPLY PINS: VCC, VINDCDC1, VINDCDC2, VINDCDC3 | ||||||||
| I(q) | Operating quiescent current, PFM | VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V |
All 3 DCDC converters enabled, zero load and no switching, LDOs enabled |
85 | 100 | μA | ||
| All 3 DCDC converters enabled, zero load and no switching, LDOs off |
78 | 90 | ||||||
| DCDC1 and DCDC2 converters enabled, zero load and no switching, LDOs off |
57 | 70 | ||||||
| DCDC1 converter enabled, zero load and no switching, LDOs off |
43 | 55 | ||||||
| II | Current into VCC; PWM | VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V |
All 3 DCDC converters enabled and running in PWM, LDOs off |
2 | 3 | mA | ||
| DCDC1 and DCDC2 converters enabled and running in PWM, LDOs off |
1.5 | 2.5 | ||||||
| DCDC1 converter enabled and running in PWM, LDOs off |
0.85 | 2 | ||||||
| I(q) | Quiescent current | All converters disabled, LDOs off, V(VSYSIN) = 0 V |
VCC = 3.6 V, VBACKUP = 3 V | 23 | 33 | μA | ||
| VCC = 2.6 V, VBACKUP = 3 V | 3.5 | 5 | ||||||
| VCC = 3.6 V, VBACKUP = 0 V | 43 | |||||||
| SUPPLY PINS: VBACKUP, VSYSIN, VRTC | ||||||||
| I(q) | Operating quiescent current | VBACKUP = 3 V, VSYSIN = 0 V; VCC = 2.6 V, current into VBACKUP |
20 | 33 | μA | |||
| I(SD) | Operating quiescent current | VBACKUP < V_VBACKUP, current into VBACKUP | 2 | 3 | μA | |||
| VRTC LDO output voltage | VSYSIN = VBACKUP = 0 V, IO = 0 mA | 3 | V | |||||
| IO | Output current for VRTC | VSYSIN < 2.57 V and VBACKUP < 2.57 V | 30 | mA | ||||
| VRTC short-circuit current limit | VRTC = GND; VSYSIN = VBACKUP = 0 V | 100 | mA | |||||
| Maximum output current at VRTC for RESPWRON = 1 |
VRTC > 2.6 V, VCC = 3 V; VSYSIN = VBACKUP = 0 V | 30 | mA | |||||
| VO | Output voltage accuracy for VRTC | VSYSIN = VBACKUP = 0 V; IO = 0 mA | –1% | 1% | ||||
| Line regulation for VRTC | VCC = VRTC + 0.5 V to 6.5 V, IO = 5 mA | –1% | 1% | |||||
| Load regulation VRTC | IO = 1 mA to 30 mA; VSYSIN = VBACKUP = 0 V | –3% | 1% | |||||
| Regulation time for VRTC | Load change from 10% to 90% | 10 | μs | |||||
| Ilkg | Input leakage current at VSYSIN | VSYSIN < V_VSYSIN | 2 | μA | ||||
| rDS(on) of VSYSIN switch | 12.5 | Ω | ||||||
| rDS(on) of VBACKUP switch | 12.5 | Ω | ||||||
| Input voltage range at VBACKUP(1) | 2.73 | 3.75 | V | |||||
| Input voltage range at VSYSIN(1) | 2.73 | 3.75 | V | |||||
| VSYSIN threshold | VSYSIN falling | –3% | 2.55 | 3% | V | |||
| VSYSIN threshold | VSYSIN rising | –3% | 2.65 | 3% | V | |||
| VBACKUP threshold | VBACKUP falling | –3% | 2.55 | 3% | V | |||
| VBACKUP threshold | VBACKUP falling | –3% | 2.65 | 3% | V | |||
| SUPPLY PIN: VINLDO | ||||||||
| I(q) | Operating quiescent current | Current per LDO into VINLDO | 16 | 30 | μA | |||
| I(SD) | Shutdown current | Total current for both LDOs into VINLDO, VLDO = 0 V | 0.1 | 1 | μA | |||
| VDCDC1 STEP-DOWN CONVERTER | ||||||||
| VI | Input voltage range, VINDCDC1 | 2.5 | 6 | V | ||||
| IO | Maximum output current | 1200 | mA | |||||
| I(SD) | Shutdown supply current in VINDCDC1 | DCDC1_EN = GND | 0.1 | 1 | μA | |||
| rDS(on) | P-channel MOSFET on-resistance | VINDCDC1 = V(GS) = 3.6 V | 125 | 261 | mΩ | |||
| Ilkg | P-channel leakage current | VINDCDC1 = 6 V | 2 | μA | ||||
| rDS(on) | N-channel MOSFET on-resistance | VINDCDC1 = V(GS) = 3.6 V | 130 | 260 | mΩ | |||
| Ilkg | N-channel leakage current | V(DS) = 6 V | 7 | 10 | μA | |||
| Forward current limit (P- and N-channel) | 2.5 V < VI(MAIN) < 6 V | 1.55 | 1.75 | 1.95 | A | |||
| fS | Oscillator frequency | 1.3 | 1.5 | 1.7 | MHz | |||
| Fixed output voltage FPWMDCDC1 = 0 | 3 V | VINDCDC1 = 3.3 V to 6 V; 0 mA ≤ IO ≤ 1.2 A | –2% | 2% | ||||
| 3.3 V | VINDCDC1 = 3.6 V to 6 V; 0 mA ≤ IO ≤ 1.2 A | –2% | 2% | |||||
| Fixed output voltage FPWMDCDC1 = 1 | 3 V | VINDCDC1 = 3.3 V to 6 V; 0 mA ≤ IO ≤ 1.2 A | –1% | 1% | ||||
| 3.3 V | VINDCDC1 = 3.6 V to 6 V; 0 mA ≤ IO ≤ 1.2 A | –1% | 1% | |||||
| Adjustable output voltage with resistor divider at DEFDCDC1; FPWMDCDC1 = 0 | VINDCDC1 = VDCDC1 + 0.3 V (min 2.5 V) to 6 V; 0 mA ≤ IO ≤ 1.2 A |
–2% | 2% | |||||
| Adjustable output voltage with resistor divider at DEFDCDC1; FPWMDCDC1 = 1 | VINDCDC1 = VDCDC1 + 0.3 V (min 2.5 V) to 6 V; 0 mA ≤ IO ≤ 1.2 A |
–1% | 1% | |||||
| Line Regulation | VINDCDC1 = VDCDC1 + 0.3 V (min 2.5 V) to 6 V; IO = 10 mA |
0 | %/V | |||||
| Load Regulation | IO = 10 mA to 1200 mA | 0.25 | %/A | |||||
| Soft start ramp time | VDCDC1 ramping from 5% to 95% of target value | 750 | μs | |||||
| Internal resistance from L1 to GND | 1 | MΩ | ||||||
| VDCDC1 discharge resistance | DCDC1 discharge = 1 | 300 | Ω | |||||
| VDCDC2 STEP-DOWN CONVERTER | ||||||||
| VI | Input voltage range, VINDCDC2 | 2.5 | 6 | V | ||||
| IO | Maximum output current | 1000 | mA | |||||
| I(SD) | Shutdown supply current in VINDCDC2 | DCDC2_EN = GND | 0.1 | 1 | μA | |||
| rDS(on) | P-channel MOSFET on-resistance | VINDCDC2 = V(GS) = 3.6 V | 140 | 300 | mΩ | |||
| Ilkg | P-channel leakage current | VINDCDC2 = 6 V | 2 | μA | ||||
| rDS(on) | N-channel MOSFET on-resistance | VINDCDC2 = V(GS) = 3.6 V | 150 | 297 | mΩ | |||
| Ilkg | N-channel leakage current | V(DS) = 6 V | 7 | 10 | μA | |||
| ILIMF | Forward current limit (P- and N-channel) | 2.5 V < VINDCDC2 < 6 V | 1.4 | 1.55 | 1.7 | A | ||
| fS | Oscillator frequency | 1.3 | 1.5 | 1.7 | MHz | |||
| Fixed output voltage FPWMDCDC2 = 0 | 1.8 V | VINDCDC2 = 2.5 V to 6 V; 0 mA ≤ IO ≤ 1 A | –2% | 2% | ||||
| 2.5 V | VINDCDC2 = 2.8 V to 6 V; 0 mA ≤ IO ≤ 1 A | –2% | 2% | |||||
| Fixed output voltage FPWMDCDC2 = 1 | 1.8 V | VINDCDC2 = 2.5 V to 6 V; 0 mA ≤ IO ≤ 1 A | –2% | 2% | ||||
| 2.5 V | VINDCDC2 = 2.8 V to 6 V; 0 mA ≤ IO ≤ 1 A | –1% | 1% | |||||
| Adjustable output voltage with resistor divider at DEFDCDC2 FPWMDCDC2 = 0 | VINDCDC2 = VDCDC2 + 0.3 V (min 2.5 V) to 6 V; 0 mA ≤ IO ≤ 1 A |
–2% | 2% | |||||
| Adjustable output voltage with resistor divider at DEFDCDC2; FPWMDCDC2 = 1 | VINDCDC2 = VDCDC2 + 0.3 V (min 2.5 V) to 6 V; 0 mA ≤ IO ≤ 1 A |
–1% | 1% | |||||
| Line Regulation | VINDCDC2 = VDCDC2 + 0.3 V (min 2.5 V) to 6 V; IO = 10 mA |
0 | %/V | |||||
| Load Regulation | IO = 10 mA to 1 mA | 0.25 | %/A | |||||
| Soft start ramp time | VDCDC2 ramping from 5% to 95% of target value | 750 | μs | |||||
| Internal resistance from L2 to GND | 1 | MΩ | ||||||
| VDCDC2 discharge resistance | DCDC2 discharge =1 | 300 | Ω | |||||
| VDCDC3 STEP-DOWN CONVERTER | ||||||||
| VI | Input voltage range, VINDCDC3 | 2.5 | 6 | V | ||||
| IO | Maximum output current | 900 | mA | |||||
| I(SD) | Shutdown supply current in VINDCDC3 | DCDC3_EN = GND | 0.1 | 1 | μA | |||
| rDS(on) | P-channel MOSFET on-resistance | VINDCDC3 = V(GS) = 3.6 V | 310 | 698 | mΩ | |||
| Ilkg | P-channel leakage current | VINDCDC3 = 6 V | 0.1 | 2 | μA | |||
| rDS(on) | N-channel MOSFET on-resistance | VINDCDC3 = V(GS) = 3.6 V | 220 | 503 | mΩ | |||
| Ilkg | N-channel leakage current | V(DS) = 6 V | 7 | 10 | μA | |||
| Forward current limit (P- and N-channel) | 2.5 V < VINDCDC3 < 6 V | 1.15 | 1.34 | 1.52 | A | |||
| fS | Oscillator frequency | 1.3 | 1.5 | 1.7 | MHz | |||
| Fixed output voltage FPWMDCDC3 = 0 | All VDCDC3 | VINDCDC3 = 2.5 V to 6 V; 0 mA ≤ IO ≤ 800 mA | –2% | 2% | ||||
| Fixed output voltage FPWMDCDC3 = 1 | All VDCDC3 | VINDCDC3 = 2.5 V to 6 V; 0 mA ≤ IO ≤ 800 mA | –1% | 1% | ||||
| Adjustable output voltage with resistor divider at DEFDCDC3 FPWMDCDC3 = 0 | VINDCDC3 = VDCDC3 + 0.5 V (min 2.5 V) to 6 V; 0 mA ≤ IO ≤ 800 mA |
–2% | 2% | |||||
| Adjustable output voltage with resistor divider at DEFDCDC3; FPWMDCDC3 = 1 | VINDCDC3 = VDCDC3 + 0.5 V (min 2.5 V) to 6 V; 0 mA ≤ IO ≤ 800 mA |
–1% | 1% | |||||
| Line Regulation | VINDCDC3 = VDCDC3 + 0.3 V (min 2.5 V) to 6 V; IO = 10 mA |
0 | %/V | |||||
| Load Regulation | IO = 10 mA to 400 mA | 0.25 | %/A | |||||
| Soft start ramp time | VDCDC3 ramping from 5% to 95% of target value | 750 | μs | |||||
| Internal resistance from L3 to GND | 1 | MΩ | ||||||
| VDCDC3 discharge resistance | DCDC3 discharge =1 | 300 | Ω | |||||
| VLDO1 and VLDO2 LOW DROPOUT REGULATORS | ||||||||
| VI | Input voltage range for LDO1, 2 | 1.5 | 6.5 | V | ||||
| VO | LDO1 output voltage range | 1 | 3.3 | V | ||||
| VO | LDO2 output voltage range | 1 | 3.3 | V | ||||
| IO | Maximum output current for LDO1, LDO2 | VI = 1.8 V, VO = 1.3 V | 200 | mA | ||||
| VI = 1.5 V, VO = 1.3 V | 120 | |||||||
| I(SC) | LDO1 and LDO2 short circuit current limit | V(LDO1) = GND, V(LDO2) = GND | 400 | mA | ||||
| Minimum voltage drop at LDO1, LDO2 | IO = 50 mA, VINLDO = 1.8 V | 120 | mV | |||||
| IO = 50 mA, VINLDO = 1.5 V | 65 | 150 | ||||||
| IO = 200 mA, VINLDO = 1.8 V | 300 | |||||||
| Output voltage accuracy for LDO1, LDO2 | IO = 10 mA | –2% | 1% | |||||
| Line regulation for LDO1, LDO2 | VINLDO1,2 = VLDO1,2 + 0.5 V (min 2.5 V) to 6.5 V, IO = 10 mA |
–1% | 1% | |||||
| Load regulation for LDO1, LDO2 | IO = 0 mA to 50 mA | –1% | 1% | |||||
| Regulation time for LDO1, LDO2 | Load change from 10% to 90% | 10 | μs | |||||
| ANALOGIC SIGNALS DEFDCDC1, DEFDCDC2, DEFDCDC3 | ||||||||
| VIH | High level input voltage | 1.3 | VCC | V | ||||
| VIL | Low level input voltage | 0 | 0.1 | V | ||||
| Input bias current | 0.001 | 0.05 | μA | |||||
| THERMAL SHUTDOWN | ||||||||
| T(SD) | Thermal shutdown | Increasing junction temperature | 160 | °C | ||||
| Thermal shutdown hysteresis | Decreasing junction temperature | 20 | °C | |||||
| INTERNAL UNDERVOLTAGE LOCK OUT | ||||||||
| UVLO | Internal UVLO | VCC falling | –2% | 2.35 | 2% | V | ||
| V(UVLO_HYST) | Internal UVLO comparator hysteresis | 120 | mV | |||||
| VOLTAGE DETECTOR COMPARATORS | ||||||||
| Comparator threshold (PWRFAIL_SNS, LOWBAT_SNS) | Falling threshold | –1% | 1 | 1% | V | |||
| Hysteresis | 40 | 50 | 60 | mV | ||||
| Propagation delay | 25 mV overdrive | 10 | μs | |||||
| POWER GOOD | ||||||||
| V(PGOODF) | VDCDC1, VDCDC2, VDCDC3, VLDO1, VLDO2, decreasing | –12% | –10% | –8% | ||||
| V(PGOODR) | VDCDC1, VDCDC2, VDCDC3, VLDO1, VLDO2, increasing | –7% | –5% | –3% | ||||
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| fMAX | Clock frequency | 400 | kHz | |
| twH(HIGH) | Clock high time | 600 | ns | |
| twL(LOW) | Clock low time | 1300 | ns | |
| tR | DATA and CLK rise time | 300 | ns | |
| tF | DATA and CLK fall time | 300 | ns | |
| th(STA) | Hold time (repeated) START condition (after this period the first clock pulse is generated) | 600 | ns | |
| th(DATA) | Setup time for repeated START condition | 600 | ns | |
| th(DATA) | Data input hold time | 0 | ns | |
| tsu(DATA) | Data input setup time | 100 | ns | |
| tsu(STO) | STOP condition setup time | 600 | ns | |
| t(BUF) | Bus free time | 1300 | ns | |
Figure 1. HOT_RESET Timing
Figure 2. Power-Up and Power-Down Timing
Figure 3. DVS Timing
| FIGURE | ||
|---|---|---|
| Efficiency | vs Output current | Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10 |
| Line transient response | Figure 11, Figure 12, Figure 13 | |
| Load transient response | Figure 14, Figure 15, Figure 16 | |
| Output voltage ripple | Figure 17, Figure 18, Figure 19 | |
| Startup | Figure 20, Figure 21 | |
| Line transient response | Figure 22, Figure 23, Figure 24 | |
| Load transient response | Figure 25, Figure 26, Figure 27 | |
Figure 4. DCDC1: Efficiency vs Output Current
Figure 6. DCDC2: Efficiency vs Output Current
Figure 8. DCDC3: Efficiency vs Output Current
Figure 10. DCDC3: Efficiency vs Output Current
Figure 12. VDCDC2 Line Transient Response
Figure 14. VDCDC1 Load Transient Response
Figure 16. VDCDC3 Load Transient Response
Figure 18. VDCDC2 Output Voltage Ripple
Figure 20. Startup VDCDC1, VDCDC2, and VDCDC3
Figure 22. LDO1 Line Transient Response
Figure 24. VRTC Line Transient Response
Figure 26. LDO2 Load Transient Response
Figure 5. DCDC1: Efficiency vs Output Current
Figure 7. DCDC2: Efficiency vs Output Current
Figure 9. DCDC3: Efficiency vs Output Current
Figure 13. VDCDC3 Line Transient Response
Figure 15. VDCDC2 Load Transient Response
Figure 17. VDCDC2 Output Voltage Ripple
Figure 19. VDCDC2 Output Voltage Ripple
Figure 21. Startup LDO1 and LDO2
Figure 23. LDO2 Line Transient Response
Figure 25. LDO1 Load Transient Response
Figure 27. VRTC Load Transient Response