SLVS149C June   2003  – September 2015 TPS65010

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Battery Charger Electrical Characteristics
    7. 6.7 Serial Interface Timing Requirements
    8. 6.8 Dissipation Ratings
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Battery Charger
        1. 7.3.1.1 Autonomous Power Source Selection
        2. 7.3.1.2 Temperature Qualification
        3. 7.3.1.3 Battery Preconditioning
        4. 7.3.1.4 Battery Charge Current
        5. 7.3.1.5 Battery Voltage Regulation
        6. 7.3.1.6 Charge Termination and Recharge
        7. 7.3.1.7 Sleep Mode
        8. 7.3.1.8 PG Output
        9. 7.3.1.9 Thermal Considerations for Setting Charge Current
      2. 7.3.2 Step-Down Converters, VMAIN and VCORE
        1. 7.3.2.1 Power Save Mode Operation
        2. 7.3.2.2 Forced PWM
        3. 7.3.2.3 Dynamic Voltage Positioning
        4. 7.3.2.4 Soft Start
        5. 7.3.2.5 100% Duty Cycle Low Dropout Operation
        6. 7.3.2.6 Active Discharge When Disabled
        7. 7.3.2.7 Power Good Monitoring
        8. 7.3.2.8 Overtemperature Shutdown
      3. 7.3.3 Low-Dropout Voltage Regulators
        1. 7.3.3.1 Power Good Monitoring
        2. 7.3.3.2 Enable and Sequencing
      4. 7.3.4 Undervoltage Lockout
      5. 7.3.5 Power-Up Sequencing
      6. 7.3.6 System Reset and Control Signals
      7. 7.3.7 Vibrator Driver
    4. 7.4 Device Functional Modes
      1. 7.4.1 TPS65010 Power States Description
        1. 7.4.1.1 State 1: No Power
        2. 7.4.1.2 State 2: ON
        3. 7.4.1.3 State 3: Low-Power Mode
        4. 7.4.1.4 State 4: Shutdown
    5. 7.5 Programming
      1. 7.5.1 LED2 Output
      2. 7.5.2 Interrupt Management
      3. 7.5.3 Serial Interface
    6. 7.6 Register Maps
      1. 7.6.1  CHGSTATUS Register (Address: 01h—Reset: 00h)
      2. 7.6.2  REGSTATUS Register (Address: 02h—Reset: 00h)
      3. 7.6.3  MASK1 Register (Address: 03h—Reset: FFh)
      4. 7.6.4  MASK2 Register (Address: 04h—Reset: FFh)
      5. 7.6.5  ACKINT1 Register (Address: 05h—Reset: 00h)
      6. 7.6.6  ACKINT2 Register (Address: 06h—Reset: 00h)
      7. 7.6.7  CHGCONFIG Register Address: 07h—Reset: 1Bh
      8. 7.6.8  LED1_ON Register (Address: 08h—Reset: 00h)
      9. 7.6.9  LED1_PER Register (Address: 09h—Reset: 00h)
      10. 7.6.10 LED2_ON Register (Address: 0Ah—Reset: 00h)
      11. 7.6.11 LED2_PER (Register Address: 0Bh—Reset: 00h)
      12. 7.6.12 VDCDC1 Register (Address: 0Ch—Reset: 72h/73h)
      13. 7.6.13 VDCDC2 Register (Address: 0Dh—Reset: 68h/78h)
      14. 7.6.14 VREGS1Register (Address: 0Eh—Reset: 88h)
      15. 7.6.15 MASK3 Register (Address: 0Fh—Reset: 00h)
      16. 7.6.16 DEFGPIO Register Address: (10h—Reset: 00h)
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 TPS65010 Typical Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Inductor Selection for the Main and the Core Converter
          2. 8.2.1.2.2 Output Capacitor Selection
          3. 8.2.1.2.3 Input Capacitor Selection
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Low-Power Mode
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
  9. Power Supply Recommendations
    1. 9.1 LDO1 Output Voltage Adjustment
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Community Resources
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range unless otherwise noted(1)(2)
MIN MAX UNIT
Input voltage on VAC pin with respect to AGND 20 V
Input voltage range on all other pins except AGND/PGND pins with respect to AGND –0.3 7 V
HBM and CBM capabilities at pins VIB, PG, and LED2 1 kV
Current at AC, VBAT, VINMAIN, L1, PGND1 1800 mA
Peak current at all other pins 1000 mA
Continuous power dissipation See Dissipation Ratings
Operating free-air temperature, TA –40 85 °C
Maximum junction temperature, TJ 125 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The TPS65012 is housed in a 48-pin QFN PowerPAD™ package with exposed leadframe on the underside.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 1000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) 1000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
V(AC) Supply voltage from AC adapter 4.5 5.5 V
V(USB) Supply voltage from USB 4.4 5.25 V
V(BAT) Voltage at battery charger 2.5 4.2 V
CI(AC) Input capacitor at AC input 1 µF
CI(USB) Input capacitor at USB input 1 µF
CI(BAT) Input capacitor at VBAT output 0.1 µF
VI(MAIN),VI(CORE),VCC Input voltage range step-down convertors 2.5 6.0 V
VO(MAIN) Output voltage range for main step-down
convertor
2.5 3.3 V
VI(CORE) Output voltage range for core step-down
convertor
0.85 1.6
VI(LDO1), VI(LDO2) Input voltage range for LDOs 1.8 6.5 V
VO(LDO1-2) Output voltage range for LDOs 0.9 VI(LDO1-2) V
IO(L1) Maximum output current at L1 1000 mA
L(L1) Inductor at L1 (1) 6.8 µH
CI(VCC) Input capacitor at VCC(1) 1 µF
CI(MAIN) Input capacitor at VINMAIN (1) 22 µF
CI(CORE) Input capacitor at VINCORE (1) 10 µF
CO(1) Output capacitor at VMAIN (1) 22 µF
IO(L2) Maximum output current at L2 400 mA
L(L2) Inductor at L2 (1) 10 µH
CO(2) Output capacitor at VCORE (1) 10 µF
CI(1-2) Input capacitor at VINLDO1, VINLDO2 (1) 1 µF
CO(1-2) Output capacitor at VLDO1-2 (1) 2.2 µF
IO(LDO1,2) Maximum output current at VLDO1,2 200 mA
TA Operating ambient temperature -40 85 °C
TJ Operating junction temperature -40 125 °C
R(CC) Resistor from VI(main),VI(core) to VCC used for filtering, CI(VCC) = 1 µF 10 100 Ω
(1) See Application and Implementation section for more information

6.4 Thermal Information

THERMAL METRIC(1) TPS65010 UNIT
RGZ (VQFN)
48 PIN
RθJA Junction-to-ambient thermal resistance 27.0 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 14.3 °C/W
RθJB Junction-to-board thermal resistance 4.6 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 4.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 1 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

VI(MAIN) = VI(CORE) = VCC = VI(LDO1) = VI(LDO2) = 3.6 V, TA = -40°C to 85°C, typical values are at TA = 25°C battery charger specifications are valid in the range 0°C < TA < 85°C unless otherwise noted
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CONTROL SIGNALS: LOW_PWR, SCLK, SDAT (INPUT)
VIH High level input voltage IIH = 20 µA (1) 2 VCC V
VIL Low level input voltage IIL = 10 µA 0 0.8 V
IIB Input bias current 0.01 1.0 µA
CONTROL SIGNALS: PB_ONOFF, HOT_RESET, BATT_COVER
VIH High level input voltage IIH = 20 µA(1) 0.8 VCC 6 V
VIL Low level input voltage IIL = 10 µA 0 0.4 V
R(pb_onoff) Pulldown resistor at PB_ONOFF 1000 kΩ
R(hot_reset) Pullup resistor at HOT_RESET,
connected to VCC
1000 kΩ
R(batt_cover) Pulldown resistor at BATT_COVER 2000 kΩ
t(glitch) De-glitch time at all 3 pins 38 56 77 ms
t(batt_cover) Delay after t(glitch) (PWRFAIL goes low) before supplies are disabled when BATT_COVER goes low. 1.68 2.4 3.2 ms
CONTROL SIGNALS: MPU_RESET, PWRFAIL, RESPWRON, INT, SDAT (OUTPUT)
VOH High level output voltage 6 V
VOL Low level output voltage IIL = 10 mA 0 0.3 V
td(mpu_nreset) Duration of low pulse at MPU_RESET 100 µs
td(nrespwron) Duration of low pulse at RESPWRON after VLDO1 is in regulation CHGCONFIG<7> = 0(Default) 800 1000 1200 ms
CHGCONFIG<7> = 1 49 69 89
td(uvlo) Time between UVLO going active (PWRFAIL going low) and supplies being disabled 1.68 2.4 3.2 ms
td(overtemp) Time between chip overtemperature condition being recognized (PWRFAIL going low) and supplies being disabled 1.68 2.4 3.2 ms
SUPPLY PIN: VCC
I(Q) Operating quiescent current VI = 3.6 V, current into Main + Core + VCC 58 µA
IO(SD) Shutdown supply current VI = 3.6 V, BATT_COVER = GND,
Current into Main + Core + VCC
15 25 µA
VMAIN STEP-DOWN CONVERTER
VI Input voltage range 2.5 6.0 V
IO Maximum output current 1000 mA
IO(SD) Shutdown supply current BATT_COVER = GND 0.1 1 µA
rDS(on) P-channel MOSFET on-resistance VI(MAIN) = VGS = 3.6 V 110 210
Ilkg(p) P-channel leakage current V(DS) = 6.0 V 1 µA
rDS(on) N-channel MOSFET on-resistance VI(MAIN) = VGS = 3.6 V 110 200
Ilkg(N) N-channel leakage current V(DS) = 6.0 V 1 µA
IL P-channel current limit 2.5 V< VI(MAIN) < 6.0 V 1.4 1.75 2.1 A
fS Oscillator frequency 1 1.25 1.5 MHz
VO(MAIN) Fixed output voltage 2.5 V VI(MAIN) = 2.7 V to 6.0 V; IO = 0 mA 0% 3%
VI(MAIN) = 2.7 V to 6.0 V;
0 mA ≤ IO ≤ 1000 mA
3% 3%
2.75 V VI(MAIN) = 2.95 V to 6.0 V; IO = 0 mA 0% 3%
VI(MAIN) = 2.95 V to 6.0 V;
0 mA ≤ IO ≤ 1000 mA
3% 3%
3.0 V VI(MAIN) = 3.2 V to 6.0 V; IO = 0 mA 0% 3%
VI(MAIN) = 3.2 V to 6.0 V;
0 mA ≤ IO ≤ 1000 mA
3% 3%
3.3 V VI(MAIN) = 3.5 V to 6.0 V; IO= 0 mA 0% 3%
VI(MAIN) = 3.5 V to 6.0 V;
0 mA ≤ IO ≤ 1000 mA
3% 3%
Line regulation VI(MAIN) = VO(MAIN) + 0.5 V (min. 2.5 V) to 6.0 V, IO = 10 mA 0.5 %/V
Load regulation IO = 10 mA to 1000 mA 0.12 %/A
R(VMAIN) VMAIN discharge resistance 400 Ω
VCORE STEP-DOWN CONVERTER
VI Input voltage range 2.5 6.0 V
IO Maximum output current 400 mA
IO(SD) Shutdown supply current BATT_COVER = GND 0.1 1 µA
rDS(on) P-channel MOSFET on-resistance VI(CORE) = VGS = 3.6 V 275 530
Ilkg(p) P-channel leakage current VDS = 6.0 V 0.1 1 µA
rDS(on) N-channel MOSFET on-resistance VI(CORE) = VGS = 3.6 V 275 500
Ilkg(N) N-channel leakage current VDS = 6.0 V 0.1 1 µA
IL P-channel current limit 2.5 V< VI(CORE) < 6.0 V 600 700 900 mA
fS Oscillator frequency 1 1.25 1.5 MHz
VO(CORE) Fixed output voltage 0.85 V VI(CORE) = 2.5 V to 6.0 V;
IO= 0 mA, CO= 22 µF
0% 3%
VI(CORE) = 2.5 V to 6.0 V;
0 mA ≤ IO ≤ 400 mA, CO= 22 µF
3% 3%
1.0 V VI(CORE) = 2.5 V to 6.0 V;
IO= 0 mA, CO = 22 µF
0% 3%
VI(CORE) = 2.5 V to 6.0 V;
0 mA ≤ IO ≤ 400 mA, CO= 22 µF
3% 3%
1.1 V VI(CORE) = 2.5 V to 6.0 V;
IO = 0 mA, CO= 22 µF
0% 3%
VI(CORE) = 2.5 V to 6.0 V;
0 mA ≤ IO ≤ 400 mA, CO= 22 µF
3% 3%
1.2 V VI(CORE) = 2.5 V to 6.0 V; IO = 0 mA 0% 3%
VI(CORE) = 2.5 V to 6.0 V; 0 mA ≤ IO ≤ 400 mA 3% 3%
1.3 V VI(CORE) = 2.5 V to 6.0 V; IO= 0 mA 0% 3%
VI(CORE) = 2.5 V to 6.0 V;
0 mA ≤ IO ≤ 400 mA
3% 3%
1.4 V VI(CORE) = 2.5 V to 6.0 V; IO= 0 mA 0% 3%
VI(CORE) = 2.5 V to 6.0 V;
0 mA ≤ IO ≤ 400 mA
3% 3%
1.5 V VI(CORE) = 2.5 V to 6.0 V; IO = 0 mA 0% 3%
VI(CORE) = 2.5 V to 6.0 V;
0 mA ≤ IO ≤ 400 mA
3% 3%
1.6 V VI(CORE) = 2.5 V to 6.0 V; IO = 0 mA 0% 3%
VI(CORE) = 2.5 V to 6.0 V;
0 mA ≤ IO ≤ 400 mA
3% 3%
Line regulation VI(CORE) = VO(MAIN) + 0.5 V
(min. 2.5 V) to 6.00 V, IO = 10 mA
1 %/V
Load regulation IO = 10 mA to 400 mA 0.002 %/mA
R(VCORE) VCORE discharge resistance 400 Ω
VLDO1 AND VLDO2 LOW-DROPOUT REGULATORS
VI Input voltage range 1.8 6.5 V
VO LDO1 output voltage range 0.9 VINLDO1 V
Vref Reference voltage 485 500 515 mV
VO LDO2 output voltage range 1.8 3.0 V
IO Maximum output current Full-power mode 200 mA
Low-power mode 30 mA
I(SC) LDO1 and LDO2 short-circuit current limit VLDO1 = GND, VLDO2 = GND 650 mA
Dropout voltage IO= 200 mA, VINLDO1,2 = 1.8 V 300 mV
Total accuracy ±3%
Line regulation VINLDO1,2 = VLDO1,2 + 0.5 V
(min. 2.5 V) to 6.5 V, IO = 10 mA
0.75 %/V
Load regulation IO = 10 mA to 200 mA 0.011 %/mA
Regulation time Load change from 10% to 90% 0.1 ms
Low-power mode 0.1
I(QFP) LDO quiescent current (each LDO) Full-power mode 16 30 µA
I(QLPM) LDO quiescent current (each LDO) Low-power mode 12 18 µA
IO(SD) LDO shutdown current (each LDO) 0.1 1 µA
Ilkg(FB) Leakage current feedback 0.01 0.1 µA
(1) If the input voltage is higher than VCC, an additional input current, limited by an internal 10-k resister, flows.

6.6 Battery Charger Electrical Characteristics

VO(REG) + V(DO-MAX) ≤ V(CHG) = V(AC) or V(USB), I(TERM) < IO≤ 1 A, 0°C < TA< 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V(AC) Input voltage range 4.5 5.5 V
V(USB) Input voltage range 4.35 5.25 V
ICC(VCHG) Supply current V(CHG) > V(CHG)min 1.2 2 mA
ICC(SLP) Sleep current Sum of currents into VBAT pin, V(CHG) < V(SLP-ENTRY),
0°C≤ TJ ≤ 85°C
2 5 µA
ICC(STBY) Standby current Current into USB pin 45 µA
Current into AC pin 200 400
VOLTAGE REGULATOR
VO Output voltage V(CHG)min ≥ 4.5 V 4.15 4.20 4.25 V
VDO Dropout voltage (V(AC) - VBAT) VO(REG) + V(DO-MAX) ≤ V(CHG),
IO(OUT) = 1 A
500 800 mV
Dropout voltage (V(USB) - VBAT) VO(REG) + V(DO-MAX)≤ V(CHG),
IO(OUT) = 0.5 A
300 500 mV
Dropout voltage (V(USB) - VBAT) VO(REG) + V(DO-MAX) ≤ V(CHG),
IO(OUT) = 0.1 A
100 150 mV
CURRENT REGULATION
IO(AC) Output current range for AC operation(1) VCHG ≥ 4.5V, VI(OUT) > V(LOWV),
V(AC) - VI(BAT)> V(DO-MAX)
100 1000 mA
V(SET) Output current set voltage for AC operation at ISET pin. 100% output current I2C register CHGCONFIG<4:3> = 11 Vmin ≥ 4.5V, VI(BAT) > V(LOWV), V(AC) - VI(BAT) > V(DO-MAX) 2.45 2.50 2.55 V
75% output current I2C register CHGCONFIG<4:3> = 10 1.83 1.91 1.99 V
50% output current I2C register CHGCONFIG<4:3> = 01 1.23 1.31 1.39 V
32% output current I2C register CHGCONFIG<4:3> = 00 0.76 0.81 0.86 V
KSET Output current set factor for ac operation 100 mA < IO < 1000 mA 310 330 350 mA
10 mA < IO < 100 mA 300 340 380
IO(USB) Output current range for USB operation V(CHG)min ≥ 4.35 V, VI(BAT) > V(LOWV), V(USB) - VI(BAT)> V(DO-MAX),
I2C register CHGCONFIG<2> = 0
80 100 mA
V(CHG)min ≥ 4.5 V, VI(BAT) > V(LOWV), VUSB - VI(BAT) > V(DO-MAX),
I2C register CHGCONFIG<2> = 1
400 500 mA
R(ISET) Resistor range at ISET pin 825 8250 Ω
PRECHARGE CURRENT REGULATION, SHORT-CIRCUIT CURRENT, AND BATTERY DETECTION CURRENT
V(LOWV) Precharge to fast-charge transition threshold,
voltage on VBAT pin.
V(CHG)min ≥ 4.5V 2.8 3.0 3.2 V
Deglitch time V(CHG)min ≥ 4.5 V, VI(OUT) decreasing below threshold; 100-ns fall time, 10-mV overdrive 250 375 500 ms
I(PRECHG) Precharge current (2) 0 ≤ VI(OUT) < V(LOWV), t < t(PRECHG) 10 100 mA
I(DETECT) Battery detection current 200 µA
V(SET-PRECHG) Voltage at ISET pin 0 ≤ VI(OUT) < V(LOWV), t < t(PRECHG) 240 255 270 mV
CHARGE TAPER AND TERMINATION DETECTION
I(TAPER) Taper current detect range (3) VI(OUT) > V(RCH), t < t(TAPER) 10 100 mA
V(SET_TAPER) Voltage at ISET pin for charge TAPER detection VI(OUT) > V(RCH), t < t(TAPER) 235 250 265 mV
V(SET_TERM) Voltage at ISET pin for charger termination
detection(4)
VI(OUT) > V(RCH) 11 18 25 mV
Deglitch time for I(TAPER) V(CHG)min ≥ 4.5V, charging current increasing or decreasing above and below; 100-ns fall time, 10-mV
overdrive
250 375 500 ms
Deglitch time for I(TERM) V(CHG)min ≥ 4.5 V, charging current decreasing below;100-ns fall time, 10-mV overdrive 250 375 500 ms
TEMPERATURE COMPARATOR
V(LTF) Low (cold) temperature threshold 2.475 2.50 2.525 V
V(HTF) High (hot) temperature threshold 0.485 0.5 0.515 V
I(TS) TS current source 95 102 110 µA
Deglitch time for temperature fault 250 375 500 ms
BATTERY RECHARGE THRESHOLD
V(RCH) Recharge threshold V(CHG)min≥ 4.5 V VO(REG) -0.115 VO(REG) -0.1 VO(REG) -0.085 V
Deglitch time V(CHG)min ≥ 4.5 V, VI(OUT) decreasing below threshold; 100 ns fall time,
10 mV overdrive
250 375 500 ms
TIMERS
t(PRECHG) Precharge timer V(CHG)min ≥ 4.5 V 1500 1800 2160 sec
t(TAPER) Taper timer V(CHG)min ≥ 4.5 V 1500 1800 2160 sec
t(CHG) Charge timer V(CHG)min ≥ 4.5 V 15000 18000 21600 sec
SLEEP AND STANDBY
V(SLP-ENTRY) Sleep-mode entry threshold, PG output = high 2.3 V ≤ VI(OUT) ≤ VO(REG) V(CHG) ≤ VI(OUT) +150 mV V
V(SLP_EXIT) Sleep-mode exit threshold,PG output = low 2.3 V ≤ VI(OUT) ≤ VO(REG) V(CHG) ≥ VI(OUT)
+190 mV
V
Deglitch time for sleep mode entry and exit AC or USB decreasing below threshold; 100-ns fall time, 10-mV overdrive 200 375 500 ms
t(USB_DEL) Delay between valid USB voltage being applied and start of charging process from USB 375 ms
CHARGER POWER-ON-RESET, UVLO, AND V(IN) RAMP RATE
V(CHGUVLO) Charger undervoltage lockout V(CHG) decreasing 2.27 2.5 2.75 V
Hysteresis 27 mV
V(CHGOVLO) Charger overvoltage lockout V(AC) increasing 6.6 V
Hysteresis 0.5 V
CHARGER OVERTEMPERATURE SUSPEND
T(suspend) Temperature at which charger suspends
operation
145 °C
T(hyst) Hysteresis of suspend threshold 20 °C
LOGIC SIGNALS DEFMAIN, DEFCORE, PS_SEQ, IFLSB
VIH High level input voltage IIH = 20 µA VCC-0.5 VCC V
VIL Low level input voltage IIL = 10 µA 0 0.4 V
IIB Input bias current 0.01 1.0 µA
LOGIC SIGNALS GPIO1-4
VOL Low level output voltage IOL = 1 mA, configured as an open-drain output 0.3 V
VOH High level output voltage Configured as an open-drain output 6 V
VIL Low level input voltage 0 0.8 V
VIH High level input voltage 2 VCC (5) V
II Input leakage current 1 µA
rDS(on) Internal NMOS VOL = 0.3 V 150 Ω
LOGIC SIGNALS PG, LED2
VOL Low level output voltage IOL = 20 mA 0.5 V
VOH High level output voltage 6 V
VIBRATOR DRIVER VIB
VOL Low level output voltage IOL = 100 mA 0.3 0.5 V
VOH High level output voltage 6 V
THERMAL SHUTDOWN
T(SD) Thermal shutdown Increasing junction temperature 160 °C
UNDERVOLTAGE LOCK OUT
V(UVLO) Undervoltage lockout threshold V(UVLO) 2.5 V Filter resistor = 10R in series
with VCC, VCC decreasing
-3% 3%
V(UVLO) 2.75 V -3% 3%
V(UVLO) 3.0 V -3% 3%
Default value V(UVLO) 3.25 V -3% 3%
V(UVLO_HYST) UVLO comparator hysteresis VCC rising 150 200 mV
POWER GOOD
VMAIN, VCORE, VLDO1, VLDO2
decreasing
-12% -10% -8%
VMAIN, VCORE, VLDO1, VLDO2
increasing
-7% -5% -3%
(1) TPS65010 q_io_note_lvs149.gif
(2) TPS65010 q_ipre_note_lvs149.gif
(3) TPS65010 q_itap_note_lvs149.gif
(4) TPS65010 q_iterm_note_lvs149.gif
(5) If the input voltage is higher than VCC an additional current, limited by an internal 10-kΩ resistor, flows.

6.7 Serial Interface Timing Requirements

MIN MAX UNIT
fMAX Clock frequency 400 kHz
twH(HIGH) Clock high time 600 ns
twL(LOW) Clock low time 1300 ns
tR DATA and CLK rise time 300 ns
tF DATA and CLK fall time 300 ns
th(STA) Hold time (repeated) START condition (after this period the first clock pulse is generated) 600 ns
th(DATA) Setup time for repeated START condition 600 ns
th(DATA) Data input hold time 0 ns
tsu(DATA) Data input setup time 100 ns
tsu(STO) STOP condition setup time 600 ns
t(BUF) Bus free time 1300 ns

6.8 Dissipation Ratings

See (1).
AMBIENT TEMPERATURE MAX POWER DISSIPATION FOR Tj= 125°C(2) DERATING FACTOR ABOVE TA = 55°C
25°C 3 W 30 mW/°C
55°C 2.1 W 30 mW/°C
(1) The TPS65010 is housed in a 48-pin QFN package with exposed leadframe on the underside. This 7 mm × 7 mm package exhibits a thermal impedance (junction-to-ambient) of 33 K/W when mounted on a JEDEC high-k board.
(2) Consideration needs to be given to the maximum charge current when the assembled application board exhibits a thermal impedance which differs significantly from the JEDEC high-k board.

6.9 Typical Characteristics

Table 1. Table of Graphs

FIGURE
Efficiency vs Output current Figure 1, Figure 2, Figure 3, Figure 4
Quiescent current vs Input voltage Figure 5
Switching frequency vs Temperature Figure 6
Output voltage vs Output current Figure 7, Figure 8
LDO1 Output voltage vs Output current Figure 9
LDO2 Output voltage vs Output current Figure 10
Line transient response (main) Figure 11
Line transient response (core) Figure 12
Line transient response (LDO1) Figure 13
Line transient response (LDO2) Figure 14
Load transient response (main) Figure 15
Load transient response (core) Figure 16
Load transient response (LDO1) Figure 17
Load transient response (LDO2) Figure 18
Output Voltage Ripple (PFM) Figure 19
Output Voltage Ripple (PWM) Figure 20
Startup timing Figure 21
Dropout voltage vs Output current Figure 22, Figure 23
PSRR (LDO1 and LDO2) vs Frequency Figure 24
TPS65010 eff0_main_lvs149.gif Figure 1. Efficiency vs Output Current
TPS65010 eff0_core_lvs149.gif Figure 3. Efficiency vs Output Current
TPS65010 IO_v_VI_lvs149.gif Figure 5. Quiescent Current vs Input Voltage
TPS65010 VO_main_IO_lvs149.gif Figure 7. LD01 Output Voltage vs Output Current
TPS65010 VO_LD01_IO_lvs149.gif Figure 9. LDO1 Output Voltage vs Output Current
TPS65010 LTR_36V_main_lvs149.gif
Figure 11. Line Transient Response (MAIN)
TPS65010 LTR_33V_LDO1_lvs149.gif Figure 13. Line Transient Response (LDO1)
TPS65010 LTR_38V_core_lvs149.gif Figure 15. Line Transient Response (CORE)
TPS65010 LTR_38V_LDO1_lvs149.gif Figure 17. Line Transient Response (LDO1)
TPS65010 PFM_out_rip_lvs149.gif Figure 19. Output Ripple (PFM)
TPS65010 Start_Up_lvs149.gif Figure 21. Startup Timing
TPS65010 VDO_low_IO_lvs149.gif Figure 23. Dropout Voltage vs Output Current
TPS65010 eff1_main_lvs149.gif Figure 2. Efficiency vs Output Current
TPS65010 eff1_core_lvs149.gif Figure 4. Efficiency vs Output Current
TPS65010 SF_v_TA_lvs149.gif Figure 6. Switching Frequency vs Temperature
TPS65010 VO_core_IO_lvs149.gif Figure 8. LD01 Output Voltage vs Output Current
TPS65010 VO_LD02_IO_lvs149.gif Figure 10. LDO2 Output Voltage vs Output Current
TPS65010 LTR_36V_core_lvs149.gif Figure 12. Line Transient Response (CORE)
TPS65010 LTR_LDO2_V33_lvs149.gif Figure 14. Line Transient Response (LDO2)
TPS65010 LTR_38V_main_lvs149.gif Figure 16. Line Transient Response (MAIN)
TPS65010 LTR_LDO2_38V_lvs149.gif Figure 18. Line Transient Response (LDO2)
TPS65010 PWM_out_rip_lvs149.gif Figure 20. Output Ripple (PWM)
TPS65010 VDO_norm_IO_lvs149.gif Figure 22. Dropout Voltage vs Output Current
TPS65010 PSRR_f_lvs149.gif Figure 24. PSRR (LDO1, LDO2) vs Frequency