ZHCSO99D June   2021  – August 2022 TPS62932 , TPS62933 , TPS62933F , TPS62933O , TPS62933P

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 说明(续)
  6. 器件比较表
  7. 引脚配置和功能
  8. 规格
    1. 8.1 绝对最大额定值
    2. 8.2 ESD 等级
    3. 8.3 建议运行条件
    4. 8.4 热性能信息
    5. 8.5 电气特性
    6. 8.6 典型特性
  9. 详细说明
    1. 9.1 概述
    2. 9.2 功能方框图
    3. 9.3 特性说明
      1. 9.3.1  固定频率峰值电流模式
      2. 9.3.2  脉冲频率调制
      3. 9.3.3  电压基准
      4. 9.3.4  输出电压设置
      5. 9.3.5  开关频率选择
      6. 9.3.6  启用并调节欠压锁定
      7. 9.3.7  外部软启动和预偏置软启动
      8. 9.3.8  电源正常
      9. 9.3.9  最短导通时间、最短关断时间和频率折返
      10. 9.3.10 扩频频谱
      11. 9.3.11 过压保护
      12. 9.3.12 过流和欠压保护
      13. 9.3.13 热关断保护
    4. 9.4 器件功能模式
      1. 9.4.1 模式概述
      2. 9.4.2 重负载运行
      3. 9.4.3 轻负载运行
      4. 9.4.4 Out-of-Audio 运行模式
      5. 9.4.5 强制连续导通运行模式
      6. 9.4.6 压降运行
      7. 9.4.7 最短导通时间运行
      8. 9.4.8 关断模式
  10. 10应用和实现
    1. 10.1 应用信息
    2. 10.2 典型应用
      1. 10.2.1 设计要求
      2. 10.2.2 详细设计过程
        1. 10.2.2.1  使用 WEBENCH® 工具创建定制设计方案
        2. 10.2.2.2  输出电压电阻器选型
        3. 10.2.2.3  选择开关频率
        4. 10.2.2.4  软启动电容器选型
        5. 10.2.2.5  自举电容器选型
        6. 10.2.2.6  欠压锁定设定点
        7. 10.2.2.7  输出电感器选型
        8. 10.2.2.8  输出电容器选择
        9. 10.2.2.9  输入电容器选择
        10. 10.2.2.10 前馈电容器 CFF 选型
        11. 10.2.2.11 最高环境温度
      3. 10.2.3 应用曲线
    3. 10.3 该做事项和禁止事项
  11. 11电源相关建议
  12. 12布局
    1. 12.1 布局指南
    2. 12.2 布局示例
  13. 13器件和文档支持
    1. 13.1 器件支持
      1. 13.1.1 第三方产品免责声明
      2. 13.1.2 开发支持
        1. 13.1.2.1 使用 WEBENCH® 工具创建定制设计方案
    2. 13.2 接收文档更新通知
    3. 13.3 支持资源
    4. 13.4 商标
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 术语表
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

最高环境温度

与任何电源转换器件一样,TPS6293x 在运行时会消耗内部功率。这种功耗的影响是将转换器的内部温度升高到环境温度以上。内部芯片温度 (TJ) 是以下各项的函数:

  • 环境温度
  • 功率损耗
  • 器件的有效热阻 (RθJA)
  • PCB 组合

最高内部芯片温度必须限制为 150°C。这会限制最大器件功耗,从而限制负载电流。Equation24 显示了重要参数之间的关系。很容易看出,较大的环境温度 (TA) 和较大的 RθJA 值会降低最大可用输出电流。可以使用本数据表中提供的曲线来估算转换器效率。请注意,这些曲线包括电感器中的功率损耗。如果在其中某条曲线中找不到所需的运行条件,则可以使用内插来估算效率。或者,可以调整 EVM 以匹配所需的应用要求,并且可以直接测量效率。RθJA 的正确值更难估计。如“半导体和 IC 封装热度量指标”应用报告 中所述,热性能信息 表中给出的 RθJA 值对于设计用途无效,不得用于估算应用的热性能。该表中报告的值是在实际应用中很少获得的一组特定条件下测量的。为 RθJC(bott) 和 ΨJT 提供的数据在确定热性能时很有用。有关更多信息和本节末尾提供的资源,请参阅“半导体和集成电路封装热指标”应用报告

Equation24. GUID-20210210-CA0I-MWXZ-D6HM-HHGCFXC0QVKN-low.gif

其中

  • ŋ 是效率。

有效 RθJA 是一个关键参数,取决于许多因素,例如:

  • 功率耗散
  • 空气温度和流量
  • PCB 面积
  • 铜散热器面积
  • 封装下的散热过孔数量
  • 相邻元件放置