ZHCSB86E November   2011  – October 2021 TPS62150 , TPS62150A , TPS62151 , TPS62152 , TPS62153

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings (1)
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Enable / Shutdown (EN)
      2. 8.3.2 Soft Start or Tracking (SS/TR)
      3. 8.3.3 Power Good (PG)
      4. 8.3.4 Pin-Selectable Output Voltage (DEF)
      5. 8.3.5 Frequency Selection (FSW)
      6. 8.3.6 Undervoltage Lockout (UVLO)
      7. 8.3.7 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Pulse-Width Modulation (PWM) Operation
      2. 8.4.2 Power-Save Mode Operation
      3. 8.4.3 100% Duty-Cycle Operation
      4. 8.4.4 Current-Limit and Short-Circuit Protection
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Programming the Output Voltage
        2. 9.2.2.2 External Component Selection
          1. 9.2.2.2.1 Inductor Selection
          2. 9.2.2.2.2 Capacitor Selection
            1. 9.2.2.2.2.1 Output Capacitor
            2. 9.2.2.2.2.2 Input Capacitor
            3. 9.2.2.2.2.3 Soft-Start Capacitor
        3. 9.2.2.3 Tracking Function
        4. 9.2.2.4 Output Filter and Loop Stability
      3. 9.2.3 Application Curves
    3. 9.3 System Examples
      1. 9.3.1 LED Power Supply
      2. 9.3.2 Active Output Discharge
      3. 9.3.3 Inverting Power Supply
      4. 9.3.4 Various Output Voltages
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
      1. 11.2.1 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 第三方产品免责声明
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 接收文档更新通知
    4. 12.4 支持资源
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息
Inductor Selection

The inductor selection is affected by several effects like inductor ripple current, output ripple voltage, PWM-to-PSM transition point, and efficiency. In addition, the inductor selected must be rated for appropriate saturation current and dc resistance (DCR). Equation 7 and Equation 8 calculate the maximum inductor current under static load conditions.

Equation 7. GUID-CB04AD96-6E9F-444E-8E58-C475A1E3787C-low.gif

Equation 8. GUID-4F809911-8B6E-4AC4-96DA-6D2D2E5653B3-low.gif

where

  • IL(max) is the maximum inductor current
  • ΔIL is the peak-to-peak inductor ripple current
  • L(min) is the minimum effective inductor value
  • fSW is the actual PWM switching frequency

Calculating the maximum inductor current using the actual operating conditions gives the minimum required saturation current of the inductor. An added margin of about 20% is recommended. A larger inductor value is also useful to get lower ripple current, but increases the transient response time and size as well. The following inductors have been used with the TPS6215x device and are recommended for use:

Table 9-3 List of Inductors
TYPE INDUCTANCE [μH] SATURATION CURRENT [A](1) DIMENSIONS [L × W× H, mm MANUFACTURER(2)
XFL4020-222ME_ 2.2 μH, ±20% 3.5 4 × 4 × 2.1 Coilcraft
XFL3012-222MEC 2.2 μH, ±20% 1.6 3 × 3 × 1.2 Coilcraft
XFL3012-332MEC 2.2 μH, ±20% 1.4 3 × 3 × 1.2 Coilcraft
VLS252012T-2R2M1R3 2.2 μH, ±20% 1.3 2.5 × 2 × 1.2 TDK
LPS3015-332 2.2 μH, ±20% 1.4 3 × 3 × 1.4 Coilcraft
744025003 2.2 μH, ±20% 1.5 2.8 × 2.8 × 2.8 Wuerth
PSI25201B-2R2MS 2.2 μH, ±20% 1.3 2 × 2.5 × 1.2 Cyntec
NR3015T-2R2M 2.2 μH, ±20% 1.5 3 × 3 × 1.5 Taiyo Yuden
Lower of IRMS at 40°C rise or ISAT at 30% drop.
Equation 9. GUID-F92E676E-76EB-4358-B419-B6E65403A827-low.gif

Using Equation 9, this current level can be adjusted by changing the inductor value.