SLVS875C January   2009  – November 2014 TPS54332

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      Efficiency
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics: Characterization Curves
    8. 6.8 Typical Characteristics: Supplemental Application Curves
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Fixed Frequency PWM Control
      2. 7.3.2  Voltage Reference (Vref)
      3. 7.3.3  Bootstrap Voltage (BOOT)
      4. 7.3.4  Enable and Adjustable Input Undervoltage Lockout (VIN UVLO)
      5. 7.3.5  Programmable Slow-Start Using SS Pin
      6. 7.3.6  Error Amplifier
      7. 7.3.7  Slope Compensation
      8. 7.3.8  Current Mode Compensation Design
      9. 7.3.9  Overcurrent Protection and Frequency Shift
      10. 7.3.10 Overvoltage Transient Protection
      11. 7.3.11 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operation With VIN < 3.5 V
      2. 7.4.2 Operation With EN Control
      3. 7.4.3 Eco-Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Switching Frequency
        2. 8.2.2.2  Output Voltage Set Point
        3. 8.2.2.3  Input Capacitors
        4. 8.2.2.4  Output Filter Components
        5. 8.2.2.5  Inductor Selection
        6. 8.2.2.6  Capacitor Selection
        7. 8.2.2.7  Compensation Components
        8. 8.2.2.8  Bootstrap Capacitor
        9. 8.2.2.9  Catch Diode
        10. 8.2.2.10 Output Voltage Limitations
        11. 8.2.2.11 Power Dissipation Estimate
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Estimated Circuit Area
    4. 10.4 Electromagnetic Interference (EMI) Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Power Dissipation Estimate

The following formulas show how to estimate the device power dissipation under continuous conduction mode operations. They should not be used if the device is working in the discontinuous conduction mode (DCM) or pulse-skipping Eco-Mode.

The device power dissipation includes:

  1. Conduction loss: Pcon = Iout2 x RDS(on) x VOUT/VIN
  2. Switching loss: Psw = 0.55 x 10-9 x VIN2 x IOUT x Fsw
  3. Gate charge loss: Pgc = 22.8 x 10-9 x Fsw
  4. Quiescent current loss: Pq = 0.082 x 10-3 x VIN

    Where:

  • IOUT is the output current (A).
  • RDS(on) is the on-resistance of the high-side MOSFET (Ω).
  • VOUT is the output voltage (V).
  • VIN is the input voltage (V).
  • Fsw is the switching frequency (Hz).
  • Ptot = Pcon + Psw + Pgc + Pq
  • For given TA , TJ = TA + Rth x Ptot.
  • For given TJMAX = 150°C, TAMAX = TJMAX– Rth x Ptot.

Where:

  • Ptot is the total device power dissipation (W).
  • TA is the ambient temperature (°C).
  • TJ is the junction temperature (°C) .
  • Rth is the thermal resistance of the package (°C/W).
  • TJMAX is maximum junction temperature (°C).
  • TAMAX is maximum ambient temperature (°C).