SLIS144B September 2011 – February 2017
PRODUCTION DATA.
| MIN | MAX | UNIT | |||
|---|---|---|---|---|---|
| VDD | Supply voltage | VDD to GND | –0.3 | 7 | V |
| IH, IL, IW | Continuous current | ±5 | mA | ||
| VI | Digital input pins (SDA, SCL) | –0.3 | VDD + 0.3 | V | |
| Potentiometer pins (H, W) | –0.3 | VDD + 0.3 | |||
| TJ(MAX) | Maximum junction temperature | 130 | °C | ||
| Tstg | Storage temperature | –65 | 150 | °C | |
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2500 | V |
| Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 | |||
| THERMAL METRIC(1) | TPL0401x-10 | UNIT | |
|---|---|---|---|
| DCK (SC70) | |||
| 6 PINS | |||
| RθJA | Junction-to-ambient thermal resistance | 234 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 110.5 | °C/W |
| RθJB | Junction-to-board thermal resistance | 79 | °C/W |
| ψJT | Junction-to-top characterization parameter | 7.2 | °C/W |
| ψJB | Junction-to-board characterization parameter | 77 | °C/W |
| RθJC(bot) | Junction-to-case (bottom) thermal resistance | N/A | °C/W |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| RTOTAL | End-to-end resistance | 8 | 10 | 12 | kΩ | ||
| RH | Terminal resistance | 100 | 200 | Ω | |||
| RW | Wiper resistance | 35 | 100 | Ω | |||
| CH | Terminal capacitance | 10 | pF | ||||
| CW | Wiper capacitance | 11 | pF | ||||
| TCR | Resistance temperature coefficient | 22 | ppm/°C | ||||
| IDD(STBY) | VDD standby current | –40°C to +105°C | 0.5 | µA | |||
| –40°C to +125°C | 1.5 | ||||||
| IIN-DIG | Digital pins leakage current (SCL, SDA Inputs) | –2.5 | 2.5 | µA | |||
| SERIAL INTERFACE SPECS (SDA, SCL) | |||||||
| VIH | Input high voltage | 0.7 × VDD | VDD | V | |||
| VIL | Input low voltage | 0 | 0.3 × VDD | V | |||
| VOL | Output low voltage | SDA Pin, IOL = 4 mA | 0.4 | V | |||
| CIN | Pin capacitance | SCL, SDA Inputs | 7 | pF | |||
| VOLTAGE DIVIDER MODE (VH = VDD, VW = Not Loaded) | |||||||
| INL(3)(1) | Integral non-linearity | –0.5 | 0.5 | LSB | |||
| DNL(4)(1) | Differential non-linearity | –0.25 | 0.25 | LSB | |||
| ZSERROR(5)(2) | Zero-scale error | 0 | 0.75 | 1.5 | LSB | ||
| FSERROR(6)(2) | Full-scale error | –1.5 | –0.75 | 0 | LSB | ||
| TCV | Ratiometric temperature coefficient | Wiper set at mid-scale | 4 | ppm/°C | |||
| BW | Bandwidth | Wiper set at mid-scale, CLOAD = 10 pF |
2862 | kHz | |||
| TSW | Wiper settling time | See Figure 10 | 0.152 | µs | |||
| THD+N | Total harmonic distortion | VH = 1 VRMS at 1 kHz, measurement at W |
0.03 | % | |||
| RHEOSTAT MODE (VH = VDD, VW = Not Loaded) | |||||||
| RINL(9)(7) | Rheostat mode integral non-linearity | –1 | 1 | LSB | |||
| RDNL(10)(7) | Rheostat mode differential non-linearity | 0.5 | 0.5 | LSB | |||
| ROFFSET(11)(8) | Rheostat-mode zero-scale error | 0 | 0.75 | 2 | LSB | ||
Figure 3. INL vs Tap Position (Rheostat Mode)
Figure 5. End-to-End RTOTAL Change vs Temperature
Figure 7. Temperature Coefficient vs TAP Position (Rheostat Mode)
Figure 2. DNL vs Tap Position (Potentiometer Mode)
Figure 4. Full Scale Error vs Temperature
Figure 6. Temperature Coefficient vs TAP Position (Potentiometer Mode)
Figure 8. Frequency Response