ZHCS277C August   2011  – April 2014 TMS320C5532 , TMS320C5533 , TMS320C5534 , TMS320C5535

PRODUCTION DATA.  

  1. 1器件概述
    1. 1.1 特性
    2. 1.2 应用
    3. 1.3 说明
    4. 1.4 功能方框图
  2. 2修订历史记录
  3. 3Device Comparison
    1. 3.1 Device Characteristics
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagram
    2. 4.2 Signal Descriptions
      1. 4.2.1  Oscillator and PLL
      2. 4.2.2  Real-Time Clock (RTC)
      3. 4.2.3  RESET, Interrupts, and JTAG
      4. 4.2.4  Inter-Integrated Circuit (I2C)
      5. 4.2.5  Inter-IC Sound (I2S)
      6. 4.2.6  Serial Peripheral Interface (SPI)
      7. 4.2.7  Universal Asynchronous Receiver/Transmitter (UART)
      8. 4.2.8  Universal Serial Bus (USB) 2.0
      9. 4.2.9  LCD Bridge
      10. 4.2.10 Secure Digital (SD)
        1. 4.2.10.1 SD1 Signal Descriptions
        2. 4.2.10.2 SD0 Signal Descriptions
      11. 4.2.11 Successive Approximation (SAR) Analog-to-Digital Converter (ADC)
      12. 4.2.12 General-Purpose Input/Output (GPIO)
      13. 4.2.13 Regulators and Power Management
      14. 4.2.14 Reserved and No Connects
      15. 4.2.15 Supply Voltage
      16. 4.2.16 Ground
    3. 4.3 Pin Multiplexing
      1. 4.3.1 LCD Controller, SPI, UART, I2S2, I2S3, and GP[31:27, 20:12] Pin Multiplexing [EBSR.PPMODE Bits] — C5535 Only
      2. 4.3.2 SD1, I2S1, and GP[11:6] Pin Multiplexing [EBSR.SP1MODE Bits]
      3. 4.3.3 SD0, I2S0, and GP[5:0] Pin Multiplexing [EBSR.SP0MODE Bits]
  5. 5Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Recommended Operating Conditions
    3. 5.3 Electrical Characteristics
    4. 5.4 Handling Ratings
    5. 5.5 Thermal Characteristics
    6. 5.6 Power-On Hours
    7. 5.7 Timing and Switching Characteristics
      1. 5.7.1  Parameter Information
        1. 5.7.1.1 1.8-V, 2.5-V, 2.75-V, and 3.3-V Signal Transition Levels
        2. 5.7.1.2 3.3-V Signal Transition Rates
        3. 5.7.1.3 Timing Parameters and Board Routing Analysis
      2. 5.7.2  Power Supplies
        1. 5.7.2.1 Power Considerations for C5535 and C5534
          1. 5.7.2.1.1 LDO Configuration
            1. 5.7.2.1.1.1 LDO Inputs
            2. 5.7.2.1.1.2 LDO Outputs
            3. 5.7.2.1.1.3 LDO Control
        2. 5.7.2.2 Power Considerations for C5533
          1. 5.7.2.2.1 LDO Configuration
            1. 5.7.2.2.1.1 LDO Inputs
            2. 5.7.2.2.1.2 LDO Outputs
            3. 5.7.2.2.1.3 LDO Control
        3. 5.7.2.3 Power Considerations for C5532
          1. 5.7.2.3.1 LDO Configuration
          2. 5.7.2.3.2 LDO Inputs
          3. 5.7.2.3.3 LDO Outputs
        4. 5.7.2.4 Power-Supply Sequencing
        5. 5.7.2.5 Digital I/O Behavior When Core Power (CVDD) is Down
        6. 5.7.2.6 Power-Supply Design Considerations
        7. 5.7.2.7 Power-Supply Decoupling
        8. 5.7.2.8 LDO Input Decoupling
        9. 5.7.2.9 LDO Output Decoupling
      3. 5.7.3  Reset
        1. 5.7.3.1 Power-On Reset (POR) Circuits
          1. 5.7.3.1.1 RTC Power-On Reset (POR)
          2. 5.7.3.1.2 Main Power-On Reset (POR)
          3. 5.7.3.1.3 Reset Pin (RESET)
        2. 5.7.3.2 Pin Behavior at Reset
        3. 5.7.3.3 Reset Electrical Data and Timing
        4. 5.7.3.4 Configurations at Reset
          1. 5.7.3.4.1 Device and Peripheral Configurations at Device Reset
        5. 5.7.3.5 Configurations After Reset
          1. 5.7.3.5.1 External Bus Selection Register (EBSR)
          2. 5.7.3.5.2 LDO Control Register [7004h]
          3. 5.7.3.5.3 USB System Control Registers (USBSCR) [1C32h]
          4. 5.7.3.5.4 Peripheral Clock Gating Control Registers (PCGCR1 and PCGCR2) [1C02h and 1C03h]
          5. 5.7.3.5.5 Pullup and Pulldown Inhibit Registers (PDINHIBR1, 2, and 3) [1C17h, 1C18h, and 1C19h]
          6. 5.7.3.5.6 Output Slew Rate Control Register (OSRCR) [1C16h]
      4. 5.7.4  Clock Specifications
        1. 5.7.4.1 Recommended Clock and Control Signal Transition Behavior
        2. 5.7.4.2 Clock Considerations
          1. 5.7.4.2.1 Clock Configurations After Device Reset
            1. 5.7.4.2.1.1 Device Clock Frequency
            2. 5.7.4.2.1.2 Peripheral Clock State
            3. 5.7.4.2.1.3 USB Oscillator Control
        3. 5.7.4.3 PLLs
          1. 5.7.4.3.1 PLL Device-Specific Information
          2. 5.7.4.3.2 Clock PLL Considerations With External Clock Sources
          3. 5.7.4.3.3 External Clock Input From RTC_XI, CLKIN, and USB_MXI Pins
            1. 5.7.4.3.3.1 Real-Time Clock (RTC) On-Chip Oscillator With External Crystal
            2. 5.7.4.3.3.2 CLKIN Pin With LVCMOS-Compatible Clock Input (Optional)
            3. 5.7.4.3.3.3 USB On-Chip Oscillator With External Crystal (Optional)
        4. 5.7.4.4 Input and Output Clocks Electrical Data and Timing
        5. 5.7.4.5 Wake-up Events, Interrupts, and XF
          1. 5.7.4.5.1 Interrupts Electrical Data and Timing
          2. 5.7.4.5.2 Wake Up From IDLE Electrical Data and Timing
          3. 5.7.4.5.3 XF Electrical Data and Timing
      5. 5.7.5  Direct Memory Access (DMA) Controller
        1. 5.7.5.1 DMA Channel Synchronization Events
      6. 5.7.6  General-Purpose Input/Output
        1. 5.7.6.1 GPIO Peripheral Input/Output Electrical Data and Timing
        2. 5.7.6.2 GPIO Peripheral Input Latency Electrical Data and Timing
      7. 5.7.7  General-Purpose Timers
      8. 5.7.8  Inter-Integrated Circuit (I2C)
        1. 5.7.8.1 I2C Electrical Data and Timing
      9. 5.7.9  Inter-IC Sound (I2S)
        1. 5.7.9.1 I2S Electrical Data and Timing
      10. 5.7.10 Liquid Crystal Display Controller (LCDC) — C5535 Only
        1. 5.7.10.1 LCDC Electrical Data and Timing
      11. 5.7.11 Real-Time Clock (RTC)
        1. 5.7.11.1 RTC-Only Mode
      12. 5.7.12 SAR ADC (10-Bit) — C5535 Only
        1. 5.7.12.1 SAR ADC Electrical Data and Timing
      13. 5.7.13 Secure Digital (SD)
        1. 5.7.13.1 SD Electrical Data and Timing
      14. 5.7.14 Serial Port Interface (SPI)
        1. 5.7.14.1 SPI Electrical Data and Timing
      15. 5.7.15 Universal Asynchronous Receiver/Transmitter (UART)
        1. 5.7.15.1 UART Electrical Data and Timing [Receive and Transmit]
      16. 5.7.16 Universal Serial Bus (USB) 2.0 Controller — Does Not Apply to C5532
        1. 5.7.16.1 USB 2.0 Electrical Data and Timing
      17. 5.7.17 Emulation and Debug
        1. 5.7.17.1 Debugging Considerations
          1. 5.7.17.1.1 Pullup and Pulldown Resistors
          2. 5.7.17.1.2 Bus Holders
          3. 5.7.17.1.3 CLKOUT Pin
      18. 5.7.18 IEEE 1149.1 JTAG
        1. 5.7.18.1 JTAG Test_port Electrical Data and Timing
  6. 6Detailed Description
    1. 6.1 CPU
    2. 6.2 Memory
      1. 6.2.1 Internal Memory
        1. 6.2.1.1 On-Chip Dual-Access RAM (DARAM)
        2. 6.2.1.2 On-Chip Read-Only Memory (ROM)
        3. 6.2.1.3 On-Chip Single-Access RAM (SARAM)
          1. 6.2.1.3.1 SARAM for C5535
          2. 6.2.1.3.2 SARAM for C5534
          3. 6.2.1.3.3 SARAM for C5533
        4. 6.2.1.4 I/O Memory
      2. 6.2.2 Memory Map
      3. 6.2.3 Register Map
        1. 6.2.3.1  General-Purpose Input/Output Peripheral Register Descriptions
        2. 6.2.3.2  I2C Peripheral Register Descriptions
        3. 6.2.3.3  I2S Peripheral Register Descriptions
        4. 6.2.3.4  LCDC Peripheral Register Descriptions
        5. 6.2.3.5  RTC Peripheral Register Descriptions
        6. 6.2.3.6  SAR ADC Peripheral Register Descriptions
        7. 6.2.3.7  SD Peripheral Register Descriptions
        8. 6.2.3.8  SPI Peripheral Register Descriptions
        9. 6.2.3.9  System Registers
        10. 6.2.3.10 Timers Peripheral Register Descriptions
        11. 6.2.3.11 UART Peripheral Register Descriptions
        12. 6.2.3.12 USB2.0 Peripheral Register Descriptions
    3. 6.3 Identification
      1. 6.3.1 JTAG Identification
    4. 6.4 Boot Modes
      1. 6.4.1 Invocation Sequence
      2. 6.4.2 Boot Configuration
      3. 6.4.3 DSP Resources Used By the Bootloader
  7. 7Device and Documentation Support
    1. 7.1 Device Support
      1. 7.1.1 Development Support
      2. 7.1.2 Device Nomenclature
    2. 7.2 Documentation Support
      1. 7.2.1 Related Documentation
    3. 7.3 Related Links
    4. 7.4 社区资源
    5. 7.5 商标
    6. 7.6 静电放电警告
    7. 7.7 Glossary
  8. 8Mechanical Packaging and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • ZAY|144
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Detailed Description

6.1 CPU

The fixed-point digital signal processors (DSP) are based on the C55x CPU 3.3 generation processor core. The C55x DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, three data read buses (one 32-bit data read bus and two 16-bit data read buses), two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four data reads and two data writes in a single cycle. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity.

The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic and logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU.

The C55x DSP generation supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory, stores them in a 128-byte Instruction Buffer Queue, and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instruction calls.

For more detailed information on the CPU, see the TMS320C55x CPU 3.0 CPU Reference Guide (literature number SWPU073).

6.2 Memory

6.2.1 Internal Memory

6.2.1.1 On-Chip Dual-Access RAM (DARAM)

The DARAM is located in the byte address range 000000h − 00FFFFh and is composed of eight blocks of 4K words each (see Table 6-1). Each DARAM block can perform two accesses per cycle (two reads, two writes, or a read and a write). The DARAM can be accessed by the internal program, data, or DMA buses.

Table 6-1 DARAM Blocks

CPU
BYTE ADDRESS RANGE
DMA CONTROLLER
BYTE ADDRESS RANGE
MEMORY BLOCK
000000h – 001FFFh 0001 0000h – 0001 1FFFh DARAM 0(1)
002000h – 003FFFh 0001 2000h – 0001 3FFFh DARAM 1
004000h – 005FFFh 0001 4000h – 0001 5FFFh DARAM 2
006000h – 007FFFh 0001 6000h – 0001 7FFFh DARAM 3
008000h – 009FFFh 0001 8000h – 0001 9FFFh DARAM 4
00A000h – 00BFFFh 0001 A000h – 0001 BFFFh DARAM 5
00C000h – 00DFFFh 0001 C000h – 0001 DFFFh DARAM 6
00E000h – 00FFFFh 0001 E000h – 0001 FFFFh DARAM 7
(1) The first 192 bytes are reserved for memory-mapped registers (MMRs). See Section 6.2.2, Memory Map Summary.

6.2.1.2 On-Chip Read-Only Memory (ROM)

The zero-wait-state ROM is located at the byte address range FE0000h – FFFFFFh. The ROM is composed of four 16K-word blocks, for a total of 128K bytes of ROM. The ROM address space can be mapped by software to the internal ROM.

The standard device includes a bootloader program resident in the ROM.

When the MPNMC bit field of the ST3 status register is cleared (by default), the byte address range FE0000h – FFFFFFh is reserved for the on-chip ROM. When the MPNMC bit field of the ST3 status register is set through software, the on-chip ROM is disabled and not present in the memory map, and byte address range FE0000h – FFFFFFh is unmapped. A hardware reset always clears the MPNMC bit, so it is not possible to disable the ROM at reset. However, the software reset instruction does not affect the MPNMC bit. The ROM can be accessed by the program and data buses. Each on-chip ROM block is a one cycle per word access memory.

6.2.1.3 On-Chip Single-Access RAM (SARAM)

Section 6.2.1.3.1 explains the SARAM blocks for the C5535. Section 6.2.1.3.2 explains the SARAM blocks for the C5534. Section 6.2.1.3.3 explains the SARAM blocks for the C5533. The C5532 has no SARAM blocks.

6.2.1.3.1 SARAM for C5535

The SARAM is located at the byte address range 010000h – 04FFFFh and is composed of 32 blocks of 4K words each (see Table 6-2). Each SARAM block can perform one access per cycle (one read or one write). SARAM can be accessed by the internal program, data, or DMA buses.

SARAM is also accessed by the USB and LCD DMA buses.

Table 6-2 SARAM Blocks for C5535

CPU
BYTE ADDRESS RANGE
DMA and USB CONTROLLER
BYTE ADDRESS RANGE
MEMORY BLOCK
010000h − 011FFFh 0009 0000h – 0009 1FFFh SARAM 0
012000h − 013FFFh 0009 2000h – 0009 3FFFh SARAM 1
014000h − 015FFFh 0009 4000h – 0009 5FFFh SARAM 2
016000h − 017FFFh 0009 6000h – 0009 7FFFh SARAM 3
018000h − 019FFFh 0009 8000h – 0009 9FFFh SARAM 4
01A000h − 01BFFFh 0009 A000h – 0009 BFFFh SARAM 5
01C000h − 01DFFFh 0009 C000h – 0009 DFFFh SARAM 6
01E000h − 01FFFFh 0009 E000h – 0009 FFFFh SARAM 7
020000h − 021FFFh 000A 0000h – 000A 1FFFh SARAM 8
022000h − 023FFFh 000A 2000h – 000A 3FFFh SARAM 9
024000h − 025FFFh 000A 4000h – 000A 5FFFh SARAM 10
026000h − 027FFFh 000A 6000h – 000A 7FFFh SARAM 11
028000h − 029FFFh 000A 8000h – 000A 9FFFh SARAM 12
02A000h − 02BFFFh 000A A000h – 000A BFFFh SARAM 13
02C000h − 02DFFFh 000A C000h – 000A DFFFh SARAM 14
02E000h − 02FFFFh 000A E000h – 000A FFFFh SARAM 15
030000h − 031FFFh 000B 0000h – 000B 1FFFh SARAM 16
032000h − 033FFFh 000B 2000h – 000B 3FFFh SARAM 17
034000h − 035FFFh 000B 4000h – 000B 5FFFh SARAM 18
036000h − 037FFFh 000B 6000h – 000B 7FFFh SARAM 19
038000h − 039FFFh 000B 8000h – 000B 9FFFh SARAM 20
03A000h − 03BFFFh 000B A000h – 000B BFFFh SARAM 21
03C000h − 03DFFFh 000B C000h – 000B DFFFh SARAM 22
03E000h − 03FFFFh 000B E000h – 000B FFFFh SARAM 23
040000h – 041FFFh 000C 0000h – 000C 1FFFh SARAM 24
042000h – 043FFFh 000C 2000h – 000C 3FFFh SARAM 25
044000h – 045FFFh 000C 4000h – 000C 5FFFh SARAM 26
046000h – 047FFFh 000C 6000h – 000C 7FFFh SARAM 27
048000h – 049FFFh 000C 8000h – 000C 9FFFh SARAM 28
04A000h – 04BFFFh 000C A000h – 000C BFFFh SARAM 29
04C000h – 04DFFFh 000C C000h – 000C DFFFh SARAM 30
04E000h – 04FFFFh 000C E000h – 000C FFFFh SARAM 31(1)
(1) SARAM31 (byte address range: 0x4E000 – 0x4EFFF) is reserved for the bootloader. After the boot process is complete, this memory space can be used.

6.2.1.3.2 SARAM for C5534

The SARAM is located at the byte address range 010000h – 03FFFFh and is composed of 24 blocks of 4K words each (see Table 6-3). Each SARAM block can perform one access per cycle (one read or one write). SARAM can be accessed by the internal program, data, or DMA buses. SARAM is also accessed by the USB bus.

Table 6-3 SARAM Blocks for C5534

CPU
BYTE ADDRESS RANGE
DMA and USB CONTROLLER
BYTE ADDRESS RANGE
MEMORY BLOCK
010000h − 011FFFh 0009 0000h – 0009 1FFFh SARAM 0
012000h − 013FFFh 0009 2000h – 0009 3FFFh SARAM 1
014000h − 015FFFh 0009 4000h – 0009 5FFFh SARAM 2
016000h − 017FFFh 0009 6000h – 0009 7FFFh SARAM 3
018000h − 019FFFh 0009 8000h – 0009 9FFFh SARAM 4
01A000h − 01BFFFh 0009 A000h – 0009 BFFFh SARAM 5
01C000h − 01DFFFh 0009 C000h – 0009 DFFFh SARAM 6
01E000h − 01FFFFh 0009 E000h – 0009 FFFFh SARAM 7
020000h − 021FFFh 000A 0000h – 000A 1FFFh SARAM 8
022000h − 023FFFh 000A 2000h – 000A 3FFFh SARAM 9
024000h − 025FFFh 000A 4000h – 000A 5FFFh SARAM 10
026000h − 027FFFh 000A 6000h – 000A 7FFFh SARAM 11
028000h − 029FFFh 000A 8000h – 000A 9FFFh SARAM 12
02A000h − 02BFFFh 000A A000h – 000A BFFFh SARAM 13
02C000h − 02DFFFh 000A C000h – 000A DFFFh SARAM 14
02E000h − 02FFFFh 000A E000h – 000A FFFFh SARAM 15
030000h − 031FFFh 000B 0000h – 000B 1FFFh SARAM 16
032000h − 033FFFh 000B 2000h – 000B 3FFFh SARAM 17
034000h − 035FFFh 000B 4000h – 000B 5FFFh SARAM 18
036000h − 037FFFh 000B 6000h – 000B 7FFFh SARAM 19
038000h − 039FFFh 000B 8000h – 000B 9FFFh SARAM 20
03A000h − 03BFFFh 000B A000h – 000B BFFFh SARAM 21
03C000h − 03DFFFh 000B C000h – 000B DFFFh SARAM 22
03E000h − 03FFFFh 000B E000h – 000B FFFFh SARAM 23

6.2.1.3.3 SARAM for C5533

The SARAM is located at the byte address range 010000h – 01FFFFh and is composed of 8 blocks of 4K words each (see Table 6-4). Each SARAM block can perform one access per cycle (one read or one write). SARAM can be accessed by the internal program, data, or DMA buses. SARAM is also accessed by the USB bus.

Table 6-4 SARAM Blocks for C5533

CPU
BYTE ADDRESS RANGE
DMA and USB CONTROLLER
BYTE ADDRESS RANGE
MEMORY BLOCK
010000h − 011FFFh 0009 0000h – 0009 1FFFh SARAM 0
012000h − 013FFFh 0009 2000h – 0009 3FFFh SARAM 1
014000h − 015FFFh 0009 4000h – 0009 5FFFh SARAM 2
016000h − 017FFFh 0009 6000h – 0009 7FFFh SARAM 3
018000h − 019FFFh 0009 8000h – 0009 9FFFh SARAM 4
01A000h − 01BFFFh 0009 A000h – 0009 BFFFh SARAM 5
01C000h − 01DFFFh 0009 C000h – 0009 DFFFh SARAM 6
01E000h − 01FFFFh 0009 E000h – 0009 FFFFh SARAM 7

6.2.1.4 I/O Memory

Each device includes a 64K byte I/O space for the memory-mapped registers of the DSP peripherals and system registers used for idle control, status monitoring and system configuration. I/O space is separate from program and memory space and is accessed with separate instruction opcodes or via the DMAs.

Table 6-5, Table 6-6 and Table 6-7 list the memory-mapped registers of each device. Note that not all addresses in the 64K byte I/O space are used; these addresses must be treated as reserved and not accessed by the CPU nor DMA. For the expanded tables of each peripheral, see , Peripheral Information and Electrical Specifications of this document.

Some DMA controllers have access to the I/O-Space memory-mapped registers of the following peripherals registers: I2C, UART, I2S, SD, USB, and SAR ADC.

Before accessing any peripheral memory-mapped register, make sure the peripheral being accessed is not held in reset via the Peripheral Reset Control Register (PRCR) and its internal clock is enabled via the Peripheral Clock Gating Control Registers (PCGCR1 and PCGCR2).

Table 6-5 Peripheral I/O-Space Control Registers for C5535

WORD ADDRESS PERIPHERAL
0x0000 – 0x0004 Idle Control
0x0005 – 0x000D through 0x0803 – 0x0BFF Reserved
0x0C00 – 0x0C7F DMA0
0x0C80 – 0x0CFF Reserved
0x0D00 – 0x0D7F DMA1
0x0D80 – 0x0DFF Reserved
0x0E00 – 0x0E7F DMA2
0x0E80 – 0x0EFF Reserved
0x0F00 – 0x0F7F DMA3
0x0F80 – 0x17FF Reserved
0x1800 – 0x181F Timer0
0x1820 – 0x183F Reserved
0x1840 – 0x185F Timer1
0x1860 – 0x187F Reserved
0x1880 – 0x189F Timer2
0x1900 – 0x197F RTC
0x1980 – 0x19FF Reserved
0x1A00 – 0x1A6C I2C
0x1A6D – 0x1AFF Reserved
0x1B00 – 0x1B1F UART
0x1B80 – 0x1BFF Reserved
0x1C00 – 0x1CFF System Control
0x1D00 – 0x1FFF through 0x2600 – 0x27FF Reserved
0x2800 – 0x2840 I2S0
0x2900 – 0x2940 I2S1
0x2A00 – 0x2A40 I2S2
0x2B00 – 0x2B40 I2S3
0x2C41 – 0x2DFF Reserved
0x2E00 – 0x2E40 LCD
0x2E41 – 0x2FFF Reserved
0x3000 – 0x300F SPI
0x3010 – 0x39FF Reserved
0x3A00 – 0x3A7F SD0
0x3A80 – 0x3AFF Reserved
0x3B00 – 0x3B7F SD1
0x3B80 – 0x6FFF Reserved
0x7000 – 0x70FF SAR and Analog Control Registers
0x7100 – 0x7FFF Reserved
0x8000 – 0xFFFF USB

Table 6-6 Peripheral I/O-Space Control Registers for C5534 and C5533

WORD ADDRESS PERIPHERAL
0x0000 – 0x0004 Idle Control
0x0005 – 0x000D through 0x0803 – 0x0BFF Reserved
0x0C00 – 0x0C7F DMA0
0x0C80 – 0x0CFF Reserved
0x0D00 – 0x0D7F DMA1
0x0D80 – 0x0DFF Reserved
0x0E00 – 0x0E7F DMA2
0x0E80 – 0x0EFF Reserved
0x0F00 – 0x0F7F DMA3
0x0F80 – 0x0FFF Reserved
0x1000 – 0x10DD Reserved
0x10EE – 0x10FF through 0x1300 – 0x17FF Reserved
0x1800 – 0x181F Timer0
0x1820 – 0x183F Reserved
0x1840 – 0x185F Timer1
0x1860 – 0x187F Reserved
0x1880 – 0x189F Timer2
0x1900 – 0x197F RTC
0x1980 – 0x19FF Reserved
0x1A00 – 0x1A6C I2C
0x1A6D – 0x1AFF Reserved
0x1B00 – 0x1B1F UART
0x1B80 – 0x1BFF Reserved
0x1C00 – 0x1CFF System Control
0x1D00 – 0x1FFF through 0x2600 – 0x27FF Reserved
0x2800 – 0x2840 I2S0
0x2900 – 0x2940 I2S1
0x2A00 – 0x2A40 I2S2
0x2B00 – 0x2B40 I2S3
0x2C41 – 0x2FFF Reserved
0x3000 – 0x300F SPI
0x3010 – 0x39FF Reserved
0x3A00 – 0x3A7F SD0
0x3A80 – 0x3AFF Reserved
0x3B00 – 0x3B7F SD1
0x3B80 – 0x7FFF Reserved
0x8000 – 0xFFFF USB

Table 6-7 Peripheral I/O-Space Control Registers for C5532

WORD ADDRESS PERIPHERAL
0x0000 – 0x0004 Idle Control
0x0005 – 0x000D through 0x0803 – 0x0BFF Reserved
0x0C00 – 0x0C7F DMA0
0x0C80 – 0x0CFF Reserved
0x0D00 – 0x0D7F DMA1
0x0D80 – 0x0DFF Reserved
0x0E00 – 0x0E7F DMA2
0x0E80 – 0x0EFF Reserved
0x0F00 – 0x0F7F DMA3
0x0F80 – 0x0FFF Reserved
0x1000 – 0x10DD Reserved
0x10EE – 0x10FF through 0x1300 – 0x17FF Reserved
0x1800 – 0x181F Timer0
0x1820 – 0x183F Reserved
0x1840 – 0x185F Timer1
0x1860 – 0x187F Reserved
0x1880 – 0x189F Timer2
0x1900 – 0x197F RTC
0x1980 – 0x19FF Reserved
0x1A00 – 0x1A6C I2C
0x1A6D – 0x1AFF Reserved
0x1B00 – 0x1B1F UART
0x1B80 – 0x1BFF Reserved
0x1C00 – 0x1CFF System Control
0x1D00 – 0x1FFF through 0x2600 – 0x27FF Reserved
0x2800 – 0x2840 I2S0
0x2900 – 0x2940 I2S1
0x2A00 – 0x2A40 I2S2
0x2B00 – 0x2B40 I2S3
0x2C41 – 0x2DFF through 0x2E41 - 0x2FFF Reserved
0x3000 – 0x300F SPI
0x3010 – 0x39FF Reserved
0x3A00 – 0x3A7F SD0
0x3A80 – 0x3AFF Reserved
0x3B00 – 0x3B7F SD1
0x3B80 – 0xFFFF Reserved

6.2.2 Memory Map

The on-chip, dual-access RAM allows two accesses to a given block during the same cycle. There are 8 blocks of 8K bytes of dual-access RAM. The on-chip, single-access RAM allows one access to a given block per cycle. In addition, there are 32 blocks of 8K bytes of single-access RAM.

The DSP memory is accessible by different master modules within the DSP, including the C55x CPU and the four DMA controllers, LCD, and USB's CDMA (see Figure 6-1).

memmapsum_c5535_prs737.gif
A. The USB and LCD controllers do not have access to DARAM.
Figure 6-1 C5535 Memory Map Summary
memmapsum_c5534_prs737.gif
A. Address shown represents the first byte address in each block.
B. The first 192 bytes are reserved for memory-mapped registers (MMRs).
C. The USB controller does not have access to DARAM.
Figure 6-2 C5534 Memory Map Summary
memmapsum_c5533_prs737.gif
A. Address shown represents the first byte address in each block.
B. The first 192 bytes are reserved for memory-mapped registers (MMRs).
C. The USB controller does not have access to DARAM.
Figure 6-3 C5533 Memory Map Summary
memmapsum_c5532_prs737.gif
A. Address shown represents the first byte address in each block.
B. The first 192 bytes are reserved for memory-mapped registers (MMRs).
Figure 6-4 C5532 Memory Map Summary

6.2.3 Register Map

6.2.3.1 General-Purpose Input/Output Peripheral Register Descriptions

The external parallel port interface includes a 16-bit general purpose I/O that can be individually programmed as input or output with interrupt capability. Control of the general purpose I/O is maintained through a set of I/O memory-mapped registers shown in Table 6-8.

Table 6-8 GPIO Registers

HEX ADDRESS RANGE ACRONYM REGISTER NAME
1C06h IODIR1 GPIO Direction Register 1
1C07h IODIR2 GPIO Direction Register 2
1C08h IOINDATA1 GPIO Data In Register 1
1C09h IOINDATA2 GPIO Data In Register 2
1C0Ah IODATAOUT1 GPIO Data Out Register 1
1C0Bh IODATAOUT2 GPIO Data Out Register 2
1C0Ch IOINTEDG1 GPIO Interrupt Edge Trigger Enable Register 1
1C0Dh IOINTEDG2 GPIO Interrupt Edge Trigger Enable Register 2
1C0Eh IOINTEN1 GPIO Interrupt Enable Register 1
1C0Fh IOINTEN2 GPIO Interrupt Enable Register 2
1C10h IOINTFLG1 GPIO Interrupt Flag Register 1
1C11h IOINTFLG2 GPIO Interrupt Flag Register 2

6.2.3.2 I2C Peripheral Register Descriptions

Table 6-9 shows the Inter-Integrated Circuit (I2C) registers.

Table 6-9 Inter-Integrated Circuit (I2C) Registers

HEX ADDRESS RANGE ACRONYM REGISTER NAME
1A00h ICOAR I2C Own Address Register
1A04h ICIMR I2C Interrupt Mask Register
1A08h ICSTR I2C Interrupt Status Register
1A0Ch ICCLKL I2C Clock Low-Time Divider Register
1A10h ICCLKH I2C Clock High-Time Divider Register
1A14h ICCNT I2C Data Count Register
1A18h ICDRR I2C Data Receive Register
1A1Ch ICSAR I2C Slave Address Register
1A20h ICDXR I2C Data Transmit Register
1A24h ICMDR I2C Mode Register
1A28h ICIVR I2C Interrupt Vector Register
1A2Ch ICEMDR I2C Extended Mode Register
1A30h ICPSC I2C Prescaler Register
1A34h ICPID1 I2C Peripheral Identification Register 1
1A38h ICPID2 I2C Peripheral Identification Register 2

6.2.3.3 I2S Peripheral Register Descriptions

Table 6-10 through Table 6-13 show the I2S0 through I2S3 registers.

Table 6-10 I2S0 Registers

HEX ADDRESS RANGE ACRONYM REGISTER NAME
2800h I2S0SCTRL I2S0 Serializer Control Register
2804h I2S0SRATE I2S0 Sample Rate Generator Register
2808h I2S0TXLT0 I2S0 Transmit Left Data 0 Register
2809h I2S0TXLT1 I2S0 Transmit Left Data 1 Register
280Ch I2S0TXRT0 I2S0 Transmit Right Data 0 Register
280Dh I2S0TXRT1 I2S0 Transmit Right Data 1 Register
2810h I2S0INTFL I2S0 Interrupt Flag Register
2814h I2S0INTMASK I2S0 Interrupt Mask Register
2828h I2S0RXLT0 I2S0 Receive Left Data 0 Register
2829h I2S0RXLT1 I2S0 Receive Left Data 1 Register
282Ch I2S0RXRT0 I2S0 Receive Right Data 0 Register
282Dh I2S0RXRT1 I2S0 Receive Right Data 1 Register

Table 6-11 I2S1 Registers

HEX ADDRESS RANGE ACRONYM REGISTER NAME
2900h I2S1SCTRL I2S1 Serializer Control Register
2904h I2S1SRATE I2S1 Sample Rate Generator Register
2908h I2S1TXLT0 I2S1 Transmit Left Data 0 Register
2909h I2S1TXLT1 I2S1 Transmit Left Data 1 Register
290Ch I2S1TXRT0 I2S1 Transmit Right Data 0 Register
290Dh I2S1TXRT1 I2S1 Transmit Right Data 1 Register
2910h I2S1INTFL I2S1 Interrupt Flag Register
2914h I2S1INTMASK I2S1 Interrupt Mask Register
2928h I2S1RXLT0 I2S1 Receive Left Data 0 Register
2929h I2S1RXLT1 I2S1 Receive Left Data 1 Register
292Ch I2S1RXRT0 I2S1 Receive Right Data 0 Register
292Dh I2S1RXRT1 I2S1 Receive Right Data 1 Register

Table 6-12 I2S2 Registers

HEX ADDRESS RANGE ACRONYM REGISTER NAME
2A00h I2S2SCTRL I2S2 Serializer Control Register
2A04h I2S2SRATE I2S2 Sample Rate Generator Register
2A08h I2S2TXLT0 I2S2 Transmit Left Data 0 Register
2A09h I2S2TXLT1 I2S2 Transmit Left Data 1 Register
2A0Ch I2S2TXRT0 I2S2 Transmit Right Data 0 Register
2A0Dh I2S2TXRT1 I2S2 Transmit Right Data 1 Register
2A10h I2S2INTFL I2S2 Interrupt Flag Register
2A14h I2S2INTMASK I2S2 Interrupt Mask Register
2A28h I2S2RXLT0 I2S2 Receive Left Data 0 Register
2A29h I2S2RXLT1 I2S2 Receive Left Data 1 Register
2A2Ch I2S2RXRT0 I2S2 Receive Right Data 0 Register
2A2Dh I2S2RXRT1 I2S2 Receive Right Data 1 Register

Table 6-13 I2S3 Registers

HEX ADDRESS RANGE ACRONYM REGISTER NAME
2B00h I2S3SCTRL I2S3 Serializer Control Register
2B04h I2S3SRATE I2S3 Sample Rate Generator Register
2B08h I2S3TXLT0 I2S3 Transmit Left Data 0 Register
2B09h I2S3TXLT1 I2S3 Transmit Left Data 1 Register
2B0Ch I2S3TXRT0 I2S3 Transmit Right Data 0 Register
2B0Dh I2S3TXRT1 I2S3 Transmit Right Data 1 Register
2B10h I2S3INTFL I2S3 Interrupt Flag Register
2B14h I2S3INTMASK I2S3 Interrupt Mask Register
2B28h I2S3RXLT0 I2S3 Receive Left Data 0 Register
2B29h I2S3RXLT1 I2S3 Receive Left Data 1 Register
2B2Ch I2S3RXRT0 I2S3 Receive Right Data 0 Register
2B2Dh I2S3RXRT1 I2S3 Receive Right Data 1 Register

6.2.3.4 LCDC Peripheral Register Descriptions

Table 6-14 shows the LCDC peripheral registers.

Table 6-14 LCD Controller Registers

CPU WORD ADDRESS ACRONYM REGISTER DESCRIPTION
2E00h LCDREVMIN LCD Minor Revision Register
2E01h LCDREVMAJ LCD Major Revision Register
2E04h LCDCR LCD Control Register
2E08h LCDSR LCD Status Register
2E0Ch LCDLIDDCR LCD LIDD Control Register
2E10h LCDLIDDCS0CONFIG0 LCD LIDD CS0 Configuration Register 0
2E11h LCDLIDDCS0CONFIG1 LCD LIDD CS0 Configuration Register 1
2E14h LCDLIDDCS0ADDR LCD LIDD CS0 Address Read and Write Register
2E18h LCDLIDDCS0DATA LCD LIDD CS0 Data Read and Write Register
2E1Ch LCDLIDDCS1CONFIG0 LCD LIDD CS1 Configuration Register 0
2E1Dh LCDLIDDCS1CONFIG1 LCD LIDD CS1 Configuration Register 1
2E20h LCDLIDDCS1ADDR LCD LIDD CS1 Address Read and Write Register
2E24h LCDLIDDCS1DATA LCD LIDD CS1 Data Read and Write Register
2E28h – 2E3Ah Reserved
2E40h LCDDMACR LCD DMA Control Register
2E44h LCDDMAFB0BAR0 LCD DMA Frame Buffer 0 Base Address Register 0
2E45h LCDDMAFB0BAR1 LCD DMA Frame Buffer 0 Base Address Register 1
2E48h LCDDMAFB0CAR0 LCD DMA Frame Buffer 0 Ceiling Address Register 0
2E49h LCDDMAFB0CAR1 LCD DMA Frame Buffer 0 Ceiling Address Register 1
2E4Ch LCDDMAFB1BAR0 LCD DMA Frame Buffer 1 Base Address Register 0
2E4Dh LCDDMAFB1BAR1 LCD DMA Frame Buffer 1 Base Address Register 1
2E50h LCDDMAFB1CAR0 LCD DMA Frame Buffer 1 Ceiling Address Register 0
2E51h LCDDMAFB1CAR1 LCD DMA Frame Buffer 1 Ceiling Address Register 1

6.2.3.5 RTC Peripheral Register Descriptions

Table 6-15 shows the RTC registers.

Table 6-15 Real-Time Clock (RTC) Registers

HEX ADDRESS RANGE ACRONYM REGISTER NAME
1900h RTCINTEN RTC Interrupt Enable Register
1901h RTCUPDATE RTC Update Register
1904h RTCMIL Milliseconds Register
1905h RTCMILA Milliseconds Alarm Register
1908h RTCSEC Seconds Register
1909h RTCSECA Seconds Alarm Register
190Ch RTCMIN Minutes Register
190Dh RTCMINA Minutes Alarm Register
1910h RTCHOUR Hours Register
1911h RTCHOURA Hours Alarm Register
1914h RTCDAY Days Register
1915h RTCDAYA Days Alarm Register
1918h RTCMONTH Months Register
1919h RTCMONTHA Months Alarm Register
191Ch RTCYEAR Years Register
191Dh RTCYEARA Years Alarm Register
1920h RTCINTFL RTC Interrupt Flag Register
1921h RTCNOPWR RTC Lost Power Status Register
1924h RTCINTREG RTC Interrupt Register
1928h RTCDRIFT RTC Compensation Register
192Ch RTCOSC RTC Oscillator Register
1930h RTCPMGT RTC Power Management Register
1960h RTCSCR1 RTC LSW Scratch Register 1
1961h RTCSCR2 RTC MSW Scratch Register 2
1964h RTCSCR3 RTC LSW Scratch Register 3
1965h RTCSCR4 RTC MSW Scratch Register 4

6.2.3.6 SAR ADC Peripheral Register Descriptions

Table 6-16 shows the SAR ADC peripheral registers.

Note: SAR ADC applies only to C5535.

Table 6-16 SAR Analog Control Registers

CPU WORD ADDRESS ACRONYM REGISTER DESCRIPTION
7012h SARCTRL SAR A/D Control Register
7014h SARDATA SAR A/D Data Register
7016h SARCLKCTRL SAR A/D Clock Control Register
7018h SARPINCTRL SAR A/D Reference and Pin Control Register
701Ah SARGPOCTRL SAR A/D GPO Control Register

6.2.3.7 SD Peripheral Register Descriptions

Table 6-17and Table 6-18 shows the SD registers. The SD0 registers start at address 3A00h and the SD1 registers start at address 3B00h.

Table 6-17 SD0 Registers

HEX ADDRESS RANGE ACRONYM REGISTER NAME
3A00h SDCTL SD Control Register
3A04h SDCLK SD Memory Clock Control Register
3A08h SDST0 SD Status Register 0
3A0Ch SDST1 SD Status Register 1
3A10h SDIM SD Interrupt Mask Register
3A14h SDTOR SD Response Time-Out Register
3A18h SDTOD SD Data Read Time-Out Register
3A1Ch SDBLEN SD Block Length Register
3A20h SDNBLK SD Number of Blocks Register
3A24h SDNBLC SD Number of Blocks Counter Register
3A28h SDDRR1 SD Data Receive 1 Register
3A29h SDDRR2 SD Data Receive 2 Register
3A2Ch SDDXR1 SD Data Transmit 1 Register
3A2Dh SDDXR2 SD Data Transmit 2 Register
3A30h SDCMD SD Command Register
3A34h SDARGHL SD Argument Register
3A38h SDRSP0 SD Response Register 0
3A39h SDRSP1 SD Response Register 1
3A3Ch SDRSP2 SD Response Register 2
3A3Dh SDRSP3 SD Response Register 3
3A40h SDRSP4 SD Response Register 4
3A41h SDRSP5 SD Response Register 5
3A44h SDRSP6 SD Response Register 6
3A45h SDRSP7 SD Response Register 7
3A48h SDDRSP SD Data Response Register
3A50h SDCIDX SD Command Index Register
3A64h – 3A70h Reserved
3A74h SDFIFOCTL SD FIFO Control Register

Table 6-18 SD1 Registers

HEX ADDRESS RANGE ACRONYM REGISTER NAME
3B00h SDCTL SD Control Register
3B04h SDCLK SD Memory Clock Control Register
3B08h SDST0 SD Status Register 0
3B0Ch SDST1 SD Status Register 1
3B10h SDIM SD Interrupt Mask Register
3B14h SDTOR SD Response Time-Out Register
3B18h SDTOD SD Data Read Time-Out Register
3B1Ch SDBLEN SD Block Length Register
3B20h SDNBLK SD Number of Blocks Register
3B24h SDNBLC SD Number of Blocks Counter Register
3B28h SDDRR1 SD Data Receive 1 Register
3B29h SDDRR2 SD Data Receive 2 Register
3B2Ch SDDXR1 SD Data Transmit 1 Register
3B2Dh SDDXR2 SD Data Transmit 2 Register
3B30h SDCMD SD Command Register
3B34h SDARGHL SD Argument Register
3B38h SDRSP0 SD Response Register 0
3B39h SDRSP1 SD Response Register 1
3B3Ch SDRSP2 SD Response Register 2
3B3Dh SDRSP3 SD Response Register 3
3B40h SDRSP4 SD Response Register 4
3B41h SDRSP5 SD Response Register 5
3B44h SDRSP6 SD Response Register 6
3B45h SDRSP7 SD Response Register 7
3B48h SDDRSP SD Data Response Register
3B50h SDCIDX SD Command Index Register
3B74h SDFIFOCTL SD FIFO Control Register

6.2.3.8 SPI Peripheral Register Descriptions

Table 6-19 shows the SPI registers.

Table 6-19 SPI Module Registers

CPU WORD ADDRESS ACRONYM REGISTER NAME
3000h SPICDR Clock Divider Register
3001h SPICCR Clock Control Register
3002h SPIDCR1 Device Configuration Register 1
3003h SPIDCR2 Device Configuration Register 2
3004h SPICMD1 Command Register 1
3005h SPICMD2 Command Register 2
3006h SPISTAT1 Status Register 1
3007h SPISTAT2 Status Register 2
3008h SPIDAT1 Data Register 1
3009h SPIDAT2 Data Register 2

6.2.3.9 System Registers

The system registers are used to configure the device and monitor its status. Brief descriptions of the various system registers are shown in Table 6-20.

Table 6-20 Idle Control, Status, and System Registers

CPU WORD ADDRESS ACRONYM Register Description COMMENTS
0001h ICR Idle Control Register
0002h ISTR Idle Status Register
1C00h EBSR External Bus Selection Register See Section 5.7.3.5.1 of this document.
1C02h PCGCR1 Peripheral Clock Gating Control Register 1
1C03h PCGCR2 Peripheral Clock Gating Control Register 2
1C04h PSRCR Peripheral Software Reset Counter Register
1C05h PRCR Peripheral Reset Control Register
1C14h TIAFR Timer Interrupt Aggregation Flag Register
1C16h ODSCR Output Drive Strength Control Register
1C17h PDINHIBR1 Pulldown Inhibit Register 1
1C18h PDINHIBR2 Pulldown Inhibit Register 2
1C19h PDINHIBR3 Pulldown Inhibit Register 3
1C1Ah DMA0CESR1 DMA0 Channel Event Source Register 1
1C1Bh DMA0CESR2 DMA0 Channel Event Source Register 2
1C1Ch DMA1CESR1 DMA1 Channel Event Source Register 1
1C1Dh DMA1CESR2 DMA1 Channel Event Source Register 2
1C28h RAMSLPMDCNTLR1 RAM Sleep Mode Control Register 1
1C2Ah RAMSLPMDCNTLR2 RAM Sleep Mode Control Register 2
1C2Bh RAMSLPMDCNTLR3 RAM Sleep Mode Control Register 3
1C2Ch RAMSLPMDCNTLR4 RAM Sleep Mode Control Register 4
1C2Dh RAMSLPMDCNTLR5 RAM Sleep Mode Control Register 5
1C30h DMAIFR DMA Interrupt Flag Aggregation Register
1C31h DMAIER DMA Interrupt Enable Register
1C32h USBSCR USB System Control Register Does not apply to TMS320C5532.
1C36h DMA2CESR1 DMA2 Channel Event Source Register 1
1C37h DMA2CESR2 DMA2 Channel Event Source Register 2
1C38h DMA3CESR1 DMA3 Channel Event Source Register 1
1C39h DMA3CESR2 DMA3 Channel Event Source Register 2
1C3Ah CLKSTOP Peripheral Clock Stop Request and Acknowledge Register
1C40h DIEIDR0 Die ID Register 0
1C41h DIEIDR1 Die ID Register 1
1C42h DIEIDR2 Die ID Register 2
1C43h DIEIDR3 Die ID Register 3
1C44h DIEIDR4 Die ID Register 4
1C45h DIEIDR5 Die ID Register 5
1C46h DIEIDR6 Die ID Register 6
1C47h DIEIDR7 Die ID Register 7
7004h LDOCNTL LDO Control Register see Section 5.7.2.1.1.3 of this document.

6.2.3.10 Timers Peripheral Register Descriptions

Table 6-21 through Table 6-24 show the timer and watchdog registers.

Table 6-21 Watchdog Timer Registers (Timer2 only)

CPU WORD ADDRESS ACRONYM REGISTER DESCRIPTION
1880h WDKCKLK Watchdog Kick Lock Register
1882h WDKICK Watchdog Kick Register
1884h WDSVLR Watchdog Start Value Lock Register
1886h WDSVR Watchdog Start Value Register
1888h WDENLOK Watchdog Enable Lock Register
188Ah WDEN Watchdog Enable Register
188Ch WDPSLR Watchdog Prescale Lock Register
188Eh WDPS Watchdog Prescale Register

Table 6-22 General-Purpose Timer 0 Registers

CPU WORD ADDRESS ACRONYM REGISTER DESCRIPTION
1810h TCR Timer 0 Control Register
1812h TIMPRD1 Timer 0 Period Register 1
1813h TIMPRD2 Timer 0 Period Register 2
1814h TIMCNT1 Timer 0 Counter Register 1
1815h TIMCNT2 Timer 0 Counter Register 2

Table 6-23 General-Purpose Timer 1 Registers

CPU WORD ADDRESS ACRONYM REGISTER DESCRIPTION
1850h TCR Timer 1 Control Register
1852h TIMPRD1 Timer 1 Period Register 1
1853h TIMPRD2 Timer 1 Period Register 2
1854h TIMCNT1 Timer 1 Counter Register 1
1855h TIMCNT2 Timer 1 Counter Register 2

Table 6-24 General-Purpose Timer 2 Registers

CPU WORD ADDRESS ACRONYM REGISTER DESCRIPTION
1890h TCR Timer 2 Control Register
1892h TIMPRD1 Timer 2 Period Register 1
1893h TIMPRD2 Timer 2 Period Register 2
1894h TIMCNT1 Timer 2 Counter Register 1
1895h TIMCNT2 Timer 2 Counter Register 2

6.2.3.11 UART Peripheral Register Descriptions

Table 6-25 shows the UART registers.

Table 6-25 UART Registers

HEX ADDRESS RANGE ACRONYM REGISTER NAME
1B00h RBR Receiver Buffer Register (read only)
1B00h THR Transmitter Holding Register (write only)
1B02h IER Interrupt Enable Register
1B04h IIR Interrupt Identification Register (read only)
1B04h FCR FIFO Control Register (write only)
1B06h LCR Line Control Register
1B08h MCR Modem Control Register
1B0Ah LSR Line Status Register
1B0Ch MSR Modem Status Register
1B0Eh SCR Scratch Register
1B10h DLL Divisor LSB Latch
1B12h DLH Divisor MSB Latch
1B18h PWREMU_MGMT Power and Emulation Management Register

6.2.3.12 USB2.0 Peripheral Register Descriptions

Table 6-26 lists of the USB2.0 peripheral registers.

Note: USB does not apply to C5532.

Table 6-26 Universal Serial Bus (USB) Registers(1)

CPU WORD ADDRESS ACRONYM REGISTER DESCRIPTION
8000h REVID1 Revision Identification Register 1
8001h REVID2 Revision Identification Register 2
8004h CTRLR Control Register
8008h STATR Status Register
800Ch EMUR Emulation Register
8010h MODER1 Mode Register 1
8011h MODER2 Mode Register 2
8014h AUTOREQ Auto Request Register
8018h SRPFIXTIME1 SRP Fix Time Register 1
8019h SRPFIXTIME2 SRP Fix Time Register 2
801Ch TEARDOWN1 Teardown Register 1
801Dh TEARDOWN2 Teardown Register 2
8020h INTSRCR1 USB Interrupt Source Register 1
8021h INTSRCR2 USB Interrupt Source Register 2
8024h INTSETR1 USB Interrupt Source Set Register 1
8025h INTSETR2 USB Interrupt Source Set Register 2
8028h INTCLRR1 USB Interrupt Source Clear Register 1
8029h INTCLRR2 USB Interrupt Source Clear Register 2
802Ch INTMSKR1 USB Interrupt Mask Register 1
802Dh INTMSKR2 USB Interrupt Mask Register 2
8030h INTMSKSETR1 USB Interrupt Mask Set Register 1
8031h INTMSKSETR2 USB Interrupt Mask Set Register 2
8034h INTMSKCLRR1 USB Interrupt Mask Clear Register 1
8035h INTMSKCLRR2 USB Interrupt Mask Clear Register 2
8038h INTMASKEDR1 USB Interrupt Source Masked Register 1
8039h INTMASKEDR2 USB Interrupt Source Masked Register 2
803Ch EOIR USB End of Interrupt Register
8040h INTVECTR1 USB Interrupt Vector Register 1
8041h INTVECTR2 USB Interrupt Vector Register 2
8050h GREP1SZR1 Generic RNDIS EP1Size Register 1
8051h GREP1SZR2 Generic RNDIS EP1Size Register 2
8054h GREP2SZR1 Generic RNDIS EP2 Size Register 1
8055h GREP2SZR2 Generic RNDIS EP2 Size Register 2
8058h GREP3SZR1 Generic RNDIS EP3 Size Register 1
8059h GREP3SZR2 Generic RNDIS EP3 Size Register 2
805Ch GREP4SZR1 Generic RNDIS EP4 Size Register 1
805Dh GREP4SZR2 Generic RNDIS EP4 Size Register 2
Common USB Registers
8401h FADDR_POWER Function Address Register, Power Management Register
8402h INTRTX Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4
8405h INTRRX Interrupt Register for Receive Endpoints 1 to 4
8406h INTRTXE Interrupt enable register for INTRTX
8409h INTRRXE Interrupt Enable Register for INTRRX
840Ah INTRUSB_INTRUSBE Interrupt Register for Common USB Interrupts, Interrupt Enable Register
840Dh FRAME Frame Number Register
840Eh INDEX_TESTMODE Index Register for Selecting the Endpoint Status and Control Registers, Register to Enable the USB 2.0 Test Modes
USB Indexed Registers
8411h TXMAXP_INDX Maximum Packet Size for Peripheral and Host Transmit Endpoint. (Index register set to select Endpoints 1-4)
8412h PERI_CSR0_INDX Control Status Register for Endpoint 0 in Peripheral Mode. (Index register set to select Endpoint 0)
PERI_TXCSR_INDX Control Status Register for Peripheral Transmit Endpoint. (Index register set to select Endpoints 1-4)
8415h RXMAXP_INDX Maximum Packet Size for Peripheral and Host Receive Endpoint. (Index register set to select Endpoints 1-4)
8416h PERI_RXCSR_INDX Control Status Register for Peripheral Receive Endpoint. (Index register set to select Endpoints 1-4)
8419h COUNT0_INDX Number of Received Bytes in Endpoint 0 FIFO. (Index register set to select Endpoint 0)
RXCOUNT_INDX Number of Bytes in Host Receive Endpoint FIFO. (Index register set to select Endpoints 1- 4)
841Ah - Reserved
841Dh - Reserved
841Eh CONFIGDATA_INDC
(Upper byte of 841Eh)
Returns details of core configuration. (index register set to select Endpoint 0)
USB FIFO Registers
8421h FIFO0R1 Transmit and Receive FIFO Register 1 for Endpoint 0
8422h FIFO0R2 Transmit and Receive FIFO Register 2 for Endpoint 0
8425h FIFO1R1 Transmit and Receive FIFO Register 1 for Endpoint 1
8426h FIFO1R2 Transmit and Receive FIFO Register 2 for Endpoint 1
8429h FIFO2R1 Transmit and Receive FIFO Register 1 for Endpoint 2
842Ah FIFO2R2 Transmit and Receive FIFO Register 2 for Endpoint 2
842Dh FIFO3R1 Transmit and Receive FIFO Register 1 for Endpoint 3
842Eh FIFO3R2 Transmit and Receive FIFO Register 2 for Endpoint 3
8431h FIFO4R1 Transmit and Receive FIFO Register 1 for Endpoint 4
8432h FIFO4R2 Transmit and Receive FIFO Register 2 for Endpoint 4
Dynamic FIFO Control Registers
8461h DEVCTL Device Control Register
8462h TXFIFOSZ_RXFIFOSZ Transmit Endpoint FIFO Size, Receive Endpoint FIFO Size (Index register set to select Endpoints 1-4)
8465h TXFIFOADDR Transmit Endpoint FIFO Address (Index register set to select Endpoints 1-4)
8466h RXFIFOADDR Receive Endpoint FIFO Address (Index register set to select Endpoints 1-4)
846Dh - Reserved
Control and Status Register for Endpoint 0
8501h - Reserved
8502h PERI_CSR0 Control Status Register for Peripheral Endpoint 0
8505h - Reserved
8506h - Reserved
8509h COUNT0 Number of Received Bytes in Endpoint 0 FIFO
850Ah - Reserved
850Dh - Reserved
850Eh CONFIGDATA
(Upper byte of 850Eh)
Returns details of core configuration.
Control and Status Register for Endpoint 1
8511h TXMAXP Maximum Packet Size for Peripheral and Host Transmit Endpoint
8512h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode)
8515h RXMAXP Maximum Packet Size for Peripheral and Host Receive Endpoint
8516h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode)
8519h RXCOUNT Number of Bytes in the Receiving Endpoint's FIFO
851Ah - Reserved
851Dh - Reserved
851Eh - Reserved
Control and Status Register for Endpoint 2
8521h TXMAXP Maximum Packet Size for Peripheral and Host Transmit Endpoint
8522h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode)
8525h RXMAXP Maximum Packet Size for Peripheral and Host Receive Endpoint
8526h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode)
8529h RXCOUNT Number of Bytes in Host Receive endpoint FIFO
852Ah - Reserved
852Dh - Reserved
852Eh - Reserved
Control and Status Register for Endpoint 3
8531h TXMAXP Maximum Packet Size for Peripheral and Host Transmit Endpoint
8532h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode)
8535h RXMAXP Maximum Packet Size for Peripheral and Host Receive Endpoint
8536h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode)
8539h RXCOUNT Number of Bytes in Host Receive endpoint FIFO
853Ah - Reserved
853Dh - Reserved
853Eh - Reserved
Control and Status Register for Endpoint 4
8541h TXMAXP Maximum Packet Size for Peripheral and Host Transmit Endpoint
8542h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode)
8545h RXMAXP Maximum Packet Size for Peripheral and Host Receive Endpoint
8546h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode)
8549h RXCOUNT Number of Bytes in Host Receive endpoint FIFO
854Ah - Reserved
854Dh - Reserved
854Eh - Reserved
CPPI DMA (CMDA) Registers
9000h - Reserved
9001h - Reserved
9004h TDFDQ CDMA Teardown Free Descriptor Queue Control Register
9008h DMAEMU CDMA Emulation Control Register
9800h TXGCR1[0] Transmit Channel 0 Global Configuration Register 1
9801h TXGCR2[0] Transmit Channel 0 Global Configuration Register 2
9808h RXGCR1[0] Receive Channel 0 Global Configuration Register 1
9809h RXGCR2[0] Receive Channel 0 Global Configuration Register 2
980Ch RXHPCR1A[0] Receive Channel 0 Host Packet Configuration Register 1 A
980Dh RXHPCR2A[0] Receive Channel 0 Host Packet Configuration Register 2 A
9810h RXHPCR1B[0] Receive Channel 0 Host Packet Configuration Register 1 B
9811h RXHPCR2B[0] Receive Channel 0 Host Packet Configuration Register 2 B
9820h TXGCR1[1] Transmit Channel 1 Global Configuration Register 1
9821h TXGCR2[1] Transmit Channel 1 Global Configuration Register 2
9828h RXGCR1[1] Receive Channel 1 Global Configuration Register 1
9829h RXGCR2[1] Receive Channel 1 Global Configuration Register 2
982Ch RXHPCR1A[1] Receive Channel 1 Host Packet Configuration Register 1 A
982Dh RXHPCR2A[1] Receive Channel 1 Host Packet Configuration Register 2 A
9830h RXHPCR1B[1] Receive Channel 1 Host Packet Configuration Register 1 B
9831h RXHPCR2B[1] Receive Channel 1 Host Packet Configuration Register 2 B
9840h TXGCR1[2] Transmit Channel 2 Global Configuration Register 1
9841h TXGCR2[2] Transmit Channel 2 Global Configuration Register 2
9848h RXGCR1[2] Receive Channel 2 Global Configuration Register 1
9849h RXGCR2[2] Receive Channel 2 Global Configuration Register 2
984Ch RXHPCR1A[2] Receive Channel 2 Host Packet Configuration Register 1 A
984Dh RXHPCR2A[2] Receive Channel 2 Host Packet Configuration Register 2 A
9850h RXHPCR1B[2] Receive Channel 2 Host Packet Configuration Register 1 B
9851h RXHPCR2B[2] Receive Channel 2 Host Packet Configuration Register 2 B
9860h TXGCR1[3] Transmit Channel 3 Global Configuration Register 1
9861h TXGCR2[3] Transmit Channel 3 Global Configuration Register 2
9868h RXGCR1[3] Receive Channel 3 Global Configuration Register 1
9869h RXGCR2[3] Receive Channel 3 Global Configuration Register 2
986Ch RXHPCR1A[3] Receive Channel 3 Host Packet Configuration Register 1 A
986Dh RXHPCR2A[3] Receive Channel 3 Host Packet Configuration Register 2 A
9870h RXHPCR1B[3] Receive Channel 3 Host Packet Configuration Register 1 B
9871h RXHPCR2B[3] Receive Channel 3 Host Packet Configuration Register 2 B
A000h DMA_SCHED_CTRL1 CDMA Scheduler Control Register 1
A001h DMA_SCHED_CTRL2 CDMA Scheduler Control Register 1
A800h + 4 × N ENTRYLSW[N] CDMA Scheduler Table Word N Registers LSW (N = 0 to 63)
A801h + 4 × N ENTRYMSW[N] CDMA Scheduler Table Word N Registers MSW (N = 0 to 63)
Queue Manager (QMGR) Registers
C000h - Reserved
C001h - Reserved
C008h DIVERSION1 Queue Manager Queue Diversion Register 1
C009h DIVERSION2 Queue Manager Queue Diversion Register 2
C020h FDBSC0 Queue Manager Free Descriptor and Buffer Starvation Count Register 0
C021h FDBSC1 Queue Manager Free Descriptor and Buffer Starvation Count Register 1
C024h FDBSC2 Queue Manager Free Descriptor and Buffer Starvation Count Register 2
C025h FDBSC3 Queue Manager Free Descriptor and Buffer Starvation Count Register 3
C028h FDBSC4 Queue Manager Free Descriptor and Buffer Starvation Count Register 4
C029h FDBSC5 Queue Manager Free Descriptor and Buffer Starvation Count Register 5
C02Ch FDBSC6 Queue Manager Free Descriptor and Buffer Starvation Count Register 6
C02Dh FDBSC7 Queue Manager Free Descriptor and Buffer Starvation Count Register 7
C080h LRAM0BASE1 Queue Manager Linking RAM Region 0 Base Address Register 1
C081h LRAM0BASE2 Queue Manager Linking RAM Region 0 Base Address Register 2
C084h LRAM0SIZE Queue Manager Linking RAM Region 0 Size Register
C085h - Reserved
C088h LRAM1BASE1 Queue Manager Linking RAM Region 1 Base Address Register 1
C089h LRAM1BASE2 Queue Manager Linking RAM Region 1 Base Address Register 2
C090h PEND0 Queue Manager Queue Pending 0
C091h PEND1 Queue Manager Queue Pending 1
C094h PEND2 Queue Manager Queue Pending 2
C095h PEND3 Queue Manager Queue Pending 3
C098h PEND4 Queue Manager Queue Pending 4
C099h PEND5 Queue Manager Queue Pending 5
D000h + 16 × R QMEMRBASE1[R] Queue Manager Memory Region R Base Address Register 1 (R = 0 to 15)
D001h + 16 × R QMEMRBASE2[R] Queue Manager Memory Region R Base Address Register 2 (R = 0 to 15)
D004h + 16 × R QMEMRCTRL1[R] Queue Manager Memory Region R Control Register (R = 0 to 15)
D005h + 16 × R QMEMRCTRL2[R] Queue Manager Memory Region R Control Register (R = 0 to 15)
E000h + 16 × N CTRL1A Queue Manager Queue N Control Register 1A (N = 0 to 63)
E001h + 16 × N CTRL2A Queue Manager Queue N Control Register 2A (N = 0 to 63)
E004h + 16 × N CTRL1B Queue Manager Queue N Control Register 1B (N = 0 to 63)
E005h + 16 × N CTRL2B Queue Manager Queue N Control Register 2B (N = 0 to 63)
E008h + 16 × N CTRL1C Queue Manager Queue N Control Register 1C (N = 0 to 63)
E009h + 16 × N CTRL2C Queue Manager Queue N Control Register 2C (N = 0 to 63)
E00Ch + 16 × N CTRL1D Queue Manager Queue N Control Register 1D (N = 0 to 63)
E00Dh + 16 × N CTRL2D Queue Manager Queue N Control Register 2D (N = 0 to 63)
E800h + 16 × N QSTAT1A Queue Manager Queue N Status Register 1A (N = 0 to 63)
E801h + 16 × N QSTAT2A Queue Manager Queue N Status Register 2A (N = 0 to 63)
E804h + 16 × N QSTAT1B Queue Manager Queue N Status Register 1B (N = 0 to 63)
E805h + 16 × N QSTAT2B Queue Manager Queue N Status Register 2B (N = 0 to 63)
E808h + 16 × N QSTAT1C Queue Manager Queue N Status Register 1C (N = 0 to 63)
E809h + 16 × N QSTAT1C Queue Manager Queue N Status Register 2C (N = 0 to 63)
(1) Before reading or writing to the USB registers, be sure to set the BYTEMODE bits to "00b" in the USB system control register to enable word accesses to the USB registers.

6.3 Identification

6.3.1 JTAG Identification

Table 6-27 JTAG ID Register

HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
N/A JTAGID JTAG Identification Register Read-only. Provides 32-bit
JTAG ID of the device.

The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. The register hex value for the device is: 0x1B8F E02F. For the actual register bit names and their associated bit field descriptions, see Figure 6-5 and Table 6-28.

31-28 27-12 11-1 0
VARIANT (4-Bit) PART NUMBER (16-Bit) MANUFACTURER (11-Bit) LSB
R-0001 R-1011 1000 1111 1110 R-0000 0010 111 R-1
LEGEND: R = Read, W = Write, n = value at reset
Figure 6-5 JTAG ID Register Description — 0x1B8F E02F

Table 6-28 JTAG ID Register Selection Bit Descriptions

BIT NAME DESCRIPTION
31:28 VARIANT Variant (4-Bit) value: 0001.
27:12 PART NUMBER Part Number (16-Bit) value: 1011 1000 1111 1110.
11:1 MANUFACTURER Manufacturer (11-Bit) value: 0000 0010 111.
0 LSB LSB. This bit is read as a "1".

6.4 Boot Modes

The DSP supports the following boot modes in the following device order: SPI 16-bit EEPROM, SPI 24-bit Flash, I2C EEPROM, and eMMC boot partition, eMMC, SD, or SDHC card. The boot mode is determined by checking for a valid boot signature on each supported boot device. The first boot device with a valid boot signature will be used to load and execute the user code. If none of the supported boot devices have a valid boot signature, the bootloader goes into an endless loop checking the UART or USB boot mode and the device must be reset to search for another valid boot image in the supported boot modes.

Note: For detailed information on eMMC boot partition, eMMC, SD, or SDHC and UART or USB boot modes, contact your local sales representative.

6.4.1 Invocation Sequence

The boot sequence is a process by which the device's on-chip memory is loaded with program and data sections from an external image file (in flash memory, for example). The boot sequence also allows, optionally, for some of the device's internal registers to be programmed with predetermined values. The boot sequence is started automatically after each device reset. For more details on device reset, see Section 5.7.3, Reset.

There are several methods by which the memory and register initialization can take place. Each of these methods is referred to as a boot mode. At reset, the device cycles through different boot modes until an image is found with a valid boot signature. The on-chip bootloader allows the DSP registers to be configured during the boot process, if the optional register configuration section is present in the boot image (see Figure 6-6). For more information on the boot modes supported, see Section 6.4, Boot Modes.

The device bootloader follows the following steps as shown in Figure 6-6

  1. Immediately after reset, the CPU fetches the reset vector from 0xFFFF00. MP or MC is 0 by default, so 0xFFFF00 is mapped to internal ROM. The PLL is in bypass mode.
  2. Set CLKOUT slew rate control to slow slew rate.
  3. Idle all peripherals, MPORT and HWA.
  4. If CLK_SEL = 0, the bootloader powers up the PLL and sets its output frequency to 12.288 MHz (with a 375x multiplier using VP = 749, VS = 0, input divider disabled, output divide-by-8 enabled, and output divider enabled with VO = 0). If CLK_SEL = 1, the bootloader keeps the PLL bypassed. Enable Timer0 to count the settling time of BG_CAP.
  5. Apply manufacturing trim to the bandgap references.
  6. Disable CLKOUT.
  7. Test for 16-bit and 24-bit SPI EEPROM boot on SPI_CS[0] with a 500-kHz clock rate and set to Parallel Port Mode on the External Bus Selection Register to 5, then set to 6:
    1. Check the first 2 bytes read from boot table for a boot signature match using 16-bit address mode.
    2. If the boot signature is not valid, read the first 2 bytes again using 24-bit address mode.
    3. If the boot signature is not valid from either case (16-bit and 24-bit address modes), go to step 8.
    4. Set Register Configuration, if present in boot image.
    5. Attempt SPI Serial Memory boot, go to step 12.
  8. Test for I2C EEPROM boot with a 7-bit slave address 0x50 and 400-kHz clock rate.
    1. Check the first 2 bytes read from boot table for a boot signature match.
    2. If the boot signature is not valid, go to step 9.
    3. Set Register Configuration, if present in boot image.
    4. Attempt I2C EEPROM boot, go to step 12.
  9. Test for eMMC partitions, eMMC, SD0 boot:
    • For an eMMC, SD, or SDHC card, the card must be formatted to FAT16 or FAT32. The boot image file must be renamed to "bootimg.bin" and copied to the foot directory of the formatted card.
    • If an eMMC boot partition is desired (for only eMMC 4.3 and up), then the boot image file must be programmed to one of the two boot partitions (1 or 2) on the eMMC card. PARTITION_CONFIG in the EXT_CSD must be set accordingly.
    • If the boot signature is found, attempt eMMC, SD, or SDHC boot and go to step 12.
      If boot signature is not found, go to step 10.
  10. Set the PLL output to approximately 36 MHz. If CLK_SEL = 1, CLKIN multiplied by 3x. If CLK_SEL = 0, CLKIN is multiplied by 1125x. Re-enable TIMER0 to start counting the settling time of BG_CAP due to the PLL change.
  11. Test for UART or USB1 boot:
    • The USB internal LDO will be enabled and the device is configured to accept a boot image on EP1 OUT.
    • UART will be set to 57600 baud, 8 bit, 1 stop bit, CTS or RTS auto flow control, and odd parity will be enabled to accept a boot image from the UART transmitter.
    • The device will poll UART and USB in turns. If a valid boot signature is detected on either device, a boot image will attempt to download on that device. Go to step 12.
      If a valid signature is not detected, return to the start of this step.
  12. Copy the boot image sections to system memory.
  13. Ensure a minimum of 200 ms has elapsed before proceeding to execute the bootloaded code.
  14. Jump to the entry point specified in the boot image.

secblfc_3-0_sprs737.gif
1. USB is not supported on TMS320C5532.
Figure 6-6 Bootloader Software Architecture

6.4.2 Boot Configuration

After reset, the on-chip bootloader programs the system clock generator based on the input clock selected via the CLK_SEL pin. If CLK_SEL = 0, the bootloader programs the system clock generator and sets the system clock to 12.288 MHz (multiply the 32.768-kHz RTC oscillator clock by 375). If CLK_SEL = 1, the bootloader bypasses the system clock generator altogether and the system clock is driven by the CLKIN pin.

Note:

  • When CLK_SEL =1, the CLKIN frequency is expected to be 11.2896 MHz, 12.0 MHz, or 12.288 MHz.
  • The on-chip bootloader allows for DSP registers to be configured during the boot process. However, this feature must not be used to change the output frequency of the system clock generator during the boot process. Timer0 is also used by the bootloader to allow for 200 ms of BG_CAP settling time. The bootloader register modification feature must not modify the PLL or Timer0 registers.

After hardware reset, the DSP boots via the bootloader code in ROM. During the boot process, the bootloader queries each peripheral to determine if it can boot from that peripheral. At that time, the individual peripheral clocks will be enabled for the query and then disabled when the bootloader is finished with the peripheral. By the time the bootloader releases control to the user code, all peripheral clocks will be "off" and all domains in the ICR, except the CPU domain, will be idled.

6.4.3 DSP Resources Used By the Bootloader

The bootloader uses SARAM block 31 for the storing of temporary data. This block of memory is reserved during the boot process. However, after the boot process is complete, it can be used by the user application.