ZHCSFN0C November   2016  – January 2019 TLV172 , TLV2172 , TLV4172

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     简化原理图
  4. 修订历史记录
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions: TLV172
    2.     Pin Functions: TLV2172
    3.     Pin Functions: TLV4172
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information: TLV172
    5. 7.5 Thermal Information: TLV2172
    6. 7.6 Thermal Information: TLV4172
    7. 7.7 Electrical Characteristics
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Operating Characteristics
      2. 8.3.2 Phase-Reversal Protection
      3. 8.3.3 Electrical Overstress
      4. 8.3.4 Capacitive Load and Stability
    4. 8.4 Device Functional Modes
      1. 8.4.1 Common-Mode Voltage Range
      2. 8.4.2 Overload Recovery
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 第三方产品免责声明
      2. 12.1.2 开发支持
        1. 12.1.2.1 TINA-TI™(免费软件下载)
        2. 12.1.2.2 DIP 适配器 EVM
        3. 12.1.2.3 通用运放 EVM
        4. 12.1.2.4 TI 高精度设计
        5. 12.1.2.5 WEBENCH滤波器设计器
    2. 12.2 文档支持
      1. 12.2.1 相关文档
    3. 12.3 相关链接
    4. 12.4 接收文档更新通知
    5. 12.5 社区资源
    6. 12.6 商标
    7. 12.7 静电放电警告
    8. 12.8 术语表
  13. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Detailed Design Procedure

Figure 29 shows a unity-gain buffer driving a capacitive load. Equation 1 shows the transfer function for the circuit in Figure 29.Figure 29 does not show the open-loop output resistance of the operational amplifier (Ro).

Equation 1. TLV172 TLV2172 TLV4172 ai_refdes_eqn_bos618.gif

The transfer function in Equation 1 has a pole and a zero. The frequency of the pole (fp) is determined by (Ro + RISO) and CLOAD. The RISO and CLOAD components determine the frequency of the zero (fz). A stable system is obtained by selecting RISO so that the rate of closure (ROC) between the open-loop gain (AOL) and 1/β is 20 dB per decade. Figure 30 shows the concept. The 1/β curve for a unity-gain buffer is 0 dB.

TLV172 TLV2172 TLV4172 ai_refdes_bodeplot_bos618.gifFigure 30. Unity-Gain Amplifier With RISO Compensation

Typically, ROC stability analysis is simulated. The validity of the analysis depends on multiple factors, especially the accurate modeling of Ro. In addition to simulating the ROC, a robust stability analysis includes a measurement of overshoot percentage and AC gain peaking of the circuit using a function generator, oscilloscope, and gain and phase analyzer. Phase margin is then calculated from these measurements. Table 3 shows the overshoot percentage and AC gain peaking that correspond to phase margins of 45° and 60°. For more details on this design and other alternative devices that can replace the TLVx172, see the Capacitive Load Drive Solution Using an Isolation Resistor precision design.

Table 3. Phase Margin versus Overshoot and AC Gain Peaking

PHASE MARGIN OVERSHOOT AC GAIN PEAKING
45° 23.3% 2.35 dB
60° 8.8% 0.28 dB