SLTS278J November   2010  – March 2020 PTH08T250W

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
    1. Table 1. Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Electrical Characteristics
    3. 7.3 Typical Characteristics (VI = 12 V)
    4. 7.4 Typical Characteristics (VI = 5 V)
  8. Detailed Description
    1. 8.1 Overview: TurboTrans™ Technology
    2. 8.2 Feature Description
      1. 8.2.1 Soft-Start Power-Up
      2. 8.2.2 Differential Output Voltage Remote Sense
      3. 8.2.3 Overcurrent Protection
      4. 8.2.4 Overtemperature Protection (OTP)
  9. Application and Implementation
    1. 9.1 Typical Application
      1. 9.1.1 Detailed Design Procedure
        1. 9.1.1.1  Adjusting the Output Voltage
        2. 9.1.1.2  Capacitor Recommendations for the PTH08T250W Power Module
          1. 9.1.1.2.1 Capacitor Technologies
          2. 9.1.1.2.2 Input Capacitor (Required)
          3. 9.1.1.2.3 Input Capacitor Information
          4. 9.1.1.2.4 Output Capacitor (Required)
          5. 9.1.1.2.5 Output Capacitor Information
          6. 9.1.1.2.6 TurboTrans Output Capacitance
          7. 9.1.1.2.7 Non-TurboTrans Output Capacitance
          8. 9.1.1.2.8 Designing for Fast Load Transients
          9. 9.1.1.2.9 Capacitor Table
        3. 9.1.1.3  TurboTrans™ Technology
        4. 9.1.1.4  TurboTrans™ Selection
          1. 9.1.1.4.1 PTH08T250W Type B Capacitors
            1. 9.1.1.4.1.1 RTT Resistor Selection
          2. 9.1.1.4.2 PTH08T250W Type C Capacitors
            1. 9.1.1.4.2.1 RTT Resistor Selection
        5. 9.1.1.5  Undervoltage Lockout (UVLO)
          1. 9.1.1.5.1 UVLO Adjustment
        6. 9.1.1.6  On/Off Inhibit
        7. 9.1.1.7  Current Sharing
          1. 9.1.1.7.1 Current Sharing and TurboTrans
            1. 9.1.1.7.1.1 Current Sharing Thermal Derating Curves
            2. 9.1.1.7.1.2 Current Sharing Layout
        8. 9.1.1.8  Prebias Startup Capability
        9. 9.1.1.9  SmartSync Technology
        10. 9.1.1.10 Auto-Track™ Function
          1. 9.1.1.10.1 How Auto-Track™ Works
          2. 9.1.1.10.2 Typical Auto-Track Application
          3. 9.1.1.10.3 Notes on Use of Auto-Track™
  10. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  11. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape, Reel, and Tray Drawings

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • BCU|22
  • ECT|22
  • ECU|22
散热焊盘机械数据 (封装 | 引脚)
订购信息

Current Sharing and TurboTrans™

When using TurboTrans while paralleling two modules, the TurboTrans resistor, RTT, must be connected from the TurboTrans pin (pin 19) of the Master module to the +Sense pin (pin 17) of the Master module. When paralleling modules the procedure to calculate the proper value of output capacitance and RTT is similar to that explained in the section, however the values must be calculated for a single module. Therefore, the total output current load step must be halved before determining the required output capacitance and the RTT value as explained in the section. The value of output capacitance calculated is the minimum required output capacitance per module and the value of RTT must be calculated using this value of output capacitance. The TurboTrans pin of the Slave module must be left open.

As an example, take a look at a 12-V application requiring a 60 mV deviation during an 30 A load transient. A majority of 470 μF, 10 mΩ output capacitors are used. Use the 12 V, Type B capacitor chart, Figure 15. First, halving the load transient gives 15 A. Dividing 60 mV by 15 A gives 4 mV/A transient voltage deviation per amp of transient load step. Select 4 mV/A on the Y-axis and read across to the 'With TurboTrans' plot. Following this point down to the X-axis gives us a minimum required output capacitance of approximately 1500 μF. This is the minimum required output capacitance per module. Hence, the total minimum output capacitance is 2 × 1500 μF = 3000 μF. The required RTT resistor value for 1500 μF can then be calculated or selected from Table 5. The required RTT resistor is approximately 17.4 kΩ.