ZHCSNI7H September   2006  – March 2021 PCA9534

PRODUCTION DATA  

  1. 特性
  2. 说明
  3. Revision History
  4. Description (Continued)
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Resistance Characteristics
    5. 7.5 Electrical Characteristics
    6. 7.6 I2C Interface Timing Requirements
    7. 7.7 Switching Characteristics
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Functional Block Diagram
    2. 9.2 Device Functional Modes
      1. 9.2.1 Power-On Reset
      2. 9.2.2 I/O Port
      3. 9.2.3 Interrupt Output ( INT)
        1. 9.2.3.1 Interrupt Errata
          1. 9.2.3.1.1 Description
          2. 9.2.3.1.2 System Impact
          3. 9.2.3.1.3 System Workaround
    3. 9.3 Programming
      1. 9.3.1 I2C Interface
      2. 9.3.2 Register Map
        1. 9.3.2.1 Device Address
        2. 9.3.2.2 Control Register And Command Byte
        3. 9.3.2.3 Register Descriptions
        4. 9.3.2.4 Bus Transactions
          1. 9.3.2.4.1 Writes
          2. 9.3.2.4.2 Reads
  10. 10Application Information Disclaimer
    1. 10.1 Application Information
      1. 10.1.1 Typical Application
        1. 10.1.1.1 Design Requirements
          1. 10.1.1.1.1 Minimizing ICC When The I/O Controls Leds
  11. 11Power Supply Recommendations
    1. 11.1 Power-On Reset Requirements
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Support Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Description (Continued)

INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I2C bus. Thus, the PCA9534 can remain a simple slave device.

The device's outputs (latched) have high-current drive capability for directly driving LEDs. It has low current consumption.

Three hardware pins (A0, A1, and A2) are used to program and vary the fixed I2C address and allow up to eight devices to share the same I2C bus or SMBus.

The PCA9534 is pin-to-pin and I2C address compatible with the PCF8574. However, software changes are required due to the enhancements in the PCA9534 over the PCF8574.

The PCA9534 is a low-power version of the PCA9554. The only difference between the PCA9534 and PCA9554 is that the PCA9534 eliminates an internal I/O pullup resistor, which dramatically reduces power consumption in the standby mode when the I/Os are held low.

The PCA9534A and PCA9534 are identical, except for their fixed I2C address. This allows for up to 16 of these devices (8 of each) on the same I2C bus.