ZHCSD05 November   2014 OPA4277-EP

PRODUCTION DATA.  

  1. 特性
  2. 应用范围
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Offset Voltage Adjustment
        2. 8.2.2.2 Input Protection
        3. 8.2.2.3 Input Bias Current Cancellation
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 商标
    2. 11.2 静电放电警告
    3. 11.3 术语表
  12. 12机械封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted) (1)
MIN MAX UNIT
Supply voltage 36 V
Input voltage (V–) – 0.7 (V+) + 0.7 V
Output short circuit Continuous
Operating temperature –55 125 °C
Junction temperature 150 °C
Lead temperature (soldering, 10 s) 300 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –55 125 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) –2000 2000 V
Machine model (MM) –100 100
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Dual supply voltage ±5 ±15 V
TJ Operating junction temperature –55 125 °C

6.4 Thermal Information

THERMAL METRIC(1) OPA4277-EP UNIT
D (14 PINS)
RθJA Junction-to-ambient thermal resistance 66.3 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 19.3
RθJB Junction-to-board thermal resistance 26.8
ψJT Junction-to-top characterization parameter 2.1
ψJB Junction-to-board characterization parameter 26.2
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

At TJ = 25°C, and RL = 2 kΩ, VS = ±5 to ±15 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OFFSET VOLTAGE
VOS Input offset voltage ±20 ±65 µV
Input offset voltage over temperature TJ = –55°C to 125°C ±140
dVOS/dT Input offset voltage drift ±0.15 µV/°C
PSRR Input offset voltage vs time 0.2 µV/mo
vs power supply, VS = ±2 to ±18 V ±0.3 ±1 µV/V
TJ = –55°C to 125°C; VS = ±2 to
±18 V
±1 µV/V
Channel separation dc 0.1 µV/V
INPUT BIAS CURRENT
IB Input bias current ±0.5 ±2.8 nA
TJ = –55°C to 125°C ±7.5
IOS Input offset current ±0.5 ±2.8 nA
TJ = –55°C to 125°C ±7.5
NOISE
Input voltage noise ƒ = 0.1 to 10 Hz 0.22 µVpp
en Input voltage noise density ƒ = 10 Hz 12 nV/√Hz
ƒ = 100 Hz 8
ƒ = 1 kHz 8
ƒ = 10 kHz 8
in Current noise density ƒ = 1 kHz 0.2 pA/√Hz
INPUT VOLTAGE
VCM Common-mode voltage range (V–) + 2 (V+) – 2 V
CMRR Common-mode rejection VCM = (V–) + 2 V to (V+) – 2 V 115 140 dB
TJ = –55°C to 125°C; VCM = (V–) + 2 V to (V+) – 2 V 115
INPUT IMPEDANCE
Differential 100 || 3 MΩ || pF
Common mode VCM = (V–) + 2 V to (V+) – 2 V 250 || 3 GΩ || pF
OPEN-LOOP GAIN
AOL Open-loop voltage gain VO = (V–) + 0.5 V to (V+) – 1.2 V,
RL = 10 kΩ
140 dB
VO = (V–) + 1.5 V to (V+) – 1.5 V,
RL = 2 kΩ
126 134
TJ = –55°C to 125°C; VO = (V–) + 1.5 V to (V+) – 1.5 V, RL = 2 kΩ 126
FREQUENCY RESPONSE
GBW Gain-bandwidth product 1 MHz
SR Slew rate 0.8 V/µs
Setting time 0.1%, VS = ±15 V, G = 1, 10-V step 14 µs
0.01%, VS = ±15 V, G = 1, 10-V step 16
THD + N Total harmonic distortion + noise 1 kHz, G = 1, VO = 3.5 Vrms 0.002%
OUTPUT
VO Voltage output TJ = –55°C to 125°C; RL = 10 kΩ (V–) + 0.5 (V+) – 1.2 V
TJ = –55°C to 125°C; RL = 2 kΩ (V–) + 1.5 (V+) – 1.5
ISC Short-circuit current ±35 mA
CLOAD Capacitive load drive See Typical Characteristics
POWER SUPPLY
VS Specified voltage ±5 ±15 V
Operating voltage ±2 ±18 V
IQ Quiescent current (per amplifier) IO = 0 ±790 ±825 µA
TJ = –55°C to 125°C; IO = 0 ±900

6.6 Typical Characteristics

At TJ = 25°C, VS = ±15 V, and RL = 2 kΩ, unless otherwise noted.
graph1_sbos714.gif
Figure 1. Open-Loop Gain/Phase vs Frequency
graph3_sbos714.gif
Figure 3. Input Noise and Current Noise Spectral Density vs Frequency
graph2_sbos714.gif
Figure 2. Power Supply and Common-Mode Rejection vs Frequency
graph4_sbos714.gif
Figure 4. Input Noise Voltage vs Time
graph5_sbos714.gif
Figure 5. Channel Separation vs Frequency
graph7_sbos714.gif
Figure 7. Offset Voltage Production Distribution
graph10_sbos714.gif
Figure 9. AOL, CMR, PSR vs Temperature
graph12_sbos714.gif
Figure 11. Quiescent Current and Short-Circuit Current vs Temperature
graph14_sbos714.gif
Figure 13. Change in Input Bias Current vs Common-Mode Voltage
graph16_sbos714.gif
10-V step CL = 1500 pF
Figure 15. Settling Time vs Closed-Loop Gain
graph18_sbos714.gif
Figure 17. Output Voltage Swing vs Output Current
graph20_sbos714.gif
G = 1 CL = 1500 pF VS = 15 V
Figure 19. Large-Signal Step Response
graph22_sbos714.gif
G = 1 CL = 1500 pF VS = 15 V
Figure 21. Small-Signal Step Response
graph6_sbos714.gif
VOUT = 3.5 Vrms
Figure 6. Total Harmonic Distortion + Noise vs Frequency
graph8_sbos714.gif
Figure 8. Offset Voltage Drift Production Distribution
graph11_sbos714.gif
Figure 10. Input Bias Current vs Temperature
graph13_sbos714.gif
Figure 12. Change in Input Bias Current vs Power Supply Voltage
graph15_sbos714.gif
Figure 14. Quiescent Current vs Supply Voltage
graph17_sbos714.gif
Figure 16. Maximum Output Voltage vs Frequency
graph19_sbos714.gif
Figure 18. Small-Signal Overshoot vs Load Capacitance
graph21_sbos714.gif
G = 1 CL = 0 pF VS = 15 V
Figure 20. Small-Signal Step Response