SNOSB21D May   2008  – September 2016 LMH6518

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input Preamplifier
        1. 7.3.1.1 Primary Output Amplifier
        2. 7.3.1.2 Auxiliary Amplifier
      2. 7.3.2 Overvoltage Clamp
      3. 7.3.3 Attenuator
      4. 7.3.4 Digital Control Block
    4. 7.4 Device Functional Modes
      1. 7.4.1 Primary Amplifier
      2. 7.4.2 Auxiliary Output
    5. 7.5 Programming
      1. 7.5.1 Logic Functions
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Oscilloscope Front End
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Settings and ADC SPI Code (ECM)
          2. 8.2.1.2.2 Input and Output Considerations
            1. 8.2.1.2.2.1 Output Swing, Clamping, and Operation Beyond Full Scale
          3. 8.2.1.2.3 Oscilloscope Trigger Applications
        3. 8.2.1.3 Application Curves
      2. 8.2.2 JFET LNA Implementation
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Attenuator Design
        3. 8.2.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Device Nomenclature
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage VCC (5 V nominal) 5.5 V
VDD (3.3 V nominal) 3.6
Differential input ±1 V
Input common mode voltage 1 4 V
VCM and VCM_Aux 2 V
SPI inputs 3.6 V
Soldering temperature Infrared or convention (20 s) 235 °C
Wave (10 s) 260
Junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine model (MM) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VCC Analog supply voltage 5 ±5% V
VDD Digital supply voltage 3.3 ±5% V
TA Temperature range –40 85 °C

6.4 Thermal Information

THERMAL METRIC(1) LMH6518 UNIT
RGH (WQFN)
16 PINS
RθJA Junction-to-ambient thermal resistance 40 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 31.7 °C/W
RθJB Junction-to-board thermal resistance 11.5 °C/W
ψJT Junction-to-top characterization parameter 0.3 °C/W
ψJB Junction-to-board characterization parameter 11.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

Unless otherwise noted, all limits are ensured for TA = 25°C, input CM = 2.5 V, VCM = 1.2 V, VCM_Aux = 1.2 V, single-ended input drive, VCC = 5 V, VDD = 3.3 V, RL = 100 Ω differential (both main and auxiliary outputs), VOUT = 0.7 VPP differential (both main and auxiliary outputs), both main and auxiliary output specifications, full bandwidth setting, gain = 18.8 dB (preamp LG, 0 dB ladder attenuation), and full power setting (with auxiliary output turned on) (see Table 8 for abbreviations used).(1)
PARAMETER TEST CONDITIONS MIN(2) TYP(3) MAX(2) UNIT
DYNAMIC PERFORMANCE
LSBW –3-dB bandwidth All gains 900 MHz
Peaking All gains 1 dB
GF_0.1 dB ±0.1-dB gain flatness All gains 150 MHz
GF_1 dB ±1-dB gain flatness All gains 400 MHz
TRS Rise time 460 ps
TRL Fall time 450
OS Overshoot Main output 9%
ts_1 Settling time Main output, ±0.5% 10 ns
ts_2 Settling time Main output, ±0.05% 14
t_recover Recovery time(4) All gains <5 ns
PD Propagation delay VOUT = 0.7 VPP, all gains 1.2 ns
PD_VAR Propagation delay variation Gain varied 100 ps
NOISE, DISTORTION, AND RF SPECIFICATIONS
en_1 Input noise spectral density Max gain, 10 MHz 0.98 nV/√Hz
en_2 Input noise spectral density Preamp LG and 0-dB ladder,
10 MHz
4.1 nV/√Hz
eno_1 RMS output noise Max gain, 100 Hz to 400 MHz 1.7 mV
eno_2 RMS output noise Preamp LG, 0-dB ladder,
100 Hz to 400 MHz
940 µV
NF_1 Noise figure Max gain, RS = 50 Ω each input,
10 MHz
3.8 dB
NF_2 Noise figure Preamp LG, 0-dB ladder,
RS = 50 Ω each input, 10 MHz
13.5 dB
HD2_1 2nd harmonic distortion(5) Main output, 100 MHz, all gains –50 dBc
HD3_1 3rd harmonic distortion(5) Main output, 100 MHz, all gains –53 dBc
HD2_2 2nd harmonic distortion(5) Auxiliary output, 100 MHz, all gains –48 dBc
HD3_2 3rd harmonic distortion(5) Auxiliary output, 100 MHz, all gains –50 dBc
HD2_3 2nd harmonic distortion(5) Main output, 250 MHz, all gains –44 dBc
HD3_3 3rd harmonic distortion(5) Main output, 250 MHz, all gains –50 dBc
HD2/HD3_4 2nd/ 3rd harmonic distortion(5) Auxiliary output, 250 MHz, all gains –42 dBc
IMD3 Intermodulation distortion(5) f = 250 MHz, main output –65 dBc
OIP3_1 Intermodulation intercept(5) Main output, 250 MHz 26 dBm
P_1dB_main –1-dB compression Main output, 250 MHz, 0-dB ladder 1.8 VPP
Main output, 250 MHz, 20-dB ladder 1
P_1dB_aux –1-dB compression Auxiliary output, 250 MHz,
0-dB ladder
1.65 VPP
Auxiliary output, 250 MHz,
20-dB ladder
1
GAIN PARAMETERS
AV_DIFF_MAX Maximum gain 38.1 38.8 39.5 dB
AV_DIFF_MIN Minimum gain –1.91 –1.16 –0.4 dB
Gain_Step Gain step size All gains including preamp step 1.8 2 2.2 dB
Gain step size with ADC
(see Application and Implementation)
ADC FS adjusted 8.5 mdB
Gain_Range Gain range 39 40 41 dB
TC_AV_DIFF Gain temp coefficient(6) All gains –0.8 mdB/°C
Gain_ACC Absolute gain accuracy Compared to theoretical from
max gain in 2-dB steps
0.75 0.75 dB
MATCHING
Gain_match Gain matching,
main and auxiliary
All gains ±0.1 ±0.2 dB
BW_match –3-dB bandwidth matching,
main and auxiliary
All gains 5%
RT_match Rise time matching,
main and auxiliary
All gains 5%
PD_match Propagation delay matching,
main and auxiliary
All gains 100 ps
ANALOG I/O
CMRR_1 CM rejection ratio
(see Table 8)
Preamp HG, 0-dB ladder,
1.9 V < CMVR < 3.1 V
45 86 dB
CMRR_2 CM rejection ratio
(see Table 8)
Preamp LG, 0-dB ladder,
1.9 V < CMVR < 3.1 V
40 55 dB
CMVR_1 Input common mode
voltage range
Preamp HG, all ladder steps,
CMRR ≥ 45 dB
1.9 3.1 V
CMVR_2 Input common mode
voltage range
Preamp LG, all ladder steps,
CMRR ≥ 40 dB
1.9 3.1 V
|ΔVO_CMI_CM| All gains, 2 V < CMVR < 3 V –60 –100 dB
CMRR_CM CM rejection ratio
relative to VCM
(see Table 8)
Preamp LG, 0 dB 101 dB
Zin_diff Differential input impedance All gains 150 || 1.5 KΩ || pF
Zin_CM CM input impedance Preamp HG 420 || 1.7 KΩ || pF
Preamp LG 900 || 1.7
FSOUT1 Full scale voltage swing Main output, all gains,
THD at 100 MHz ≤ –40 dBc
770(7) 800 mVPP
FSOUT2 Full scale voltage swing Main output, clamped, 0-dB ladder 1800 1960 mVPP
FSOUT3 Full scale voltage swing Auxiliary output, all gains
THD at 100 MHz ≤ –40 dBc
770(7) 800 mVPP
FSOUT4 Full scale voltage swing Auxiliary output, clamped, 0-dB ladder 1600 1760 mVPP
VOUT_MAX1 Voltage at each
output pin (clamped)
Main output, all gains, VCM = 1.2 V 0.5 1.8 V
VOUT_MAX2 Voltage at each
output pin (clamped)
Auxiliary output, all gains,
VCM = 1.2 V
0.8 2.2 V
VOUT_MAX3 Voltage at each
output pin (clamped)
Main output, all gains, VCM = 1.45 V 2.05 V
VOUT_MAX4 Voltage at each
output pin (clamped)
Auxiliary output, all gains,
VCM = 1.45 V
2.45 V
ZOUT_DIFF Differential output impedance All gains 92 100 108 Ω
VOOS Output offset voltage All gains ±15 ±40 mV
VOOS_shift1 Output offset voltage shift Preamp LG to preamp HG 13.7 mV
VOOS_shift2 Output offset voltage shift All gains, excluding preamp step 12.7 mV
TCVOOS Output offset voltage drift(6) Preamp HG, 0-dB ladder –24 µV/°C
Preamp LG, 0-dB ladder –7
IB Input bias current(8) TA = –40°C to 85°C 40 100 µA
TA = –65°C to 150°C 140
VOCM Output CM voltage All gains TA = –40°C to 85°C 1.2 V
TA = –65°C to 150°C 0.95 1.45
VOS_CM Output CM offset All gains ±15 ±30 mV
TC_VOS_CM CM offset voltage
temperature coefficient
All gains +55 µV/°C
BAL_Error_DC Output gain balance error
LMH6518 30068802.gif
–78 dB
BAL_Error_AC Output gain balance error
LMH6518 30068803.gif
–45 dB
PB Phase balance error
(see Table 8)
250 MHz ±0.8 deg
PSRR Differential power supply
rejection (see Table 8)
Preamp HG, 0-dB ladder –60 –87 dB
Preamp LG, 0-dB ladder –50 –70
PSRR_CM CM power supply rejection
(see Table 8)
Preamp LG, 0-dB ladder –55 –71 dB
VCM_I VCM input bias current(8) All gains TA = –40°C to 85°C ±1 ±10 nA
TA = –65°C to 150°C ±20
VCM_AUX_I VCM_AUX input bias current(8) All gains TA = –40°C to 85°C ±1 ±10 nA
TA = –65°C to 150°C ±20
DIGITAL I/O
VIH Input logic high TA = –65°C to 150°C VDD–0.6 V
VIL Input logic low TA = –65°C to 150°C 0.5 V
VOH Output logic high VDD V
VOL Output logic low 0 V
RHi_Z Output resistance High impedance mode 5
I_in Input bias current <1 µA
FSCLK SCLK rate 10 MHz
FSCLK_DT SCLK duty cyle 45% 50% 55%
POWER REQUIREMENTS
IS1 Supply current, VCC TA = –40°C to 85°C 195 210 225 mA
TA = –65°C to 150°C 230
IS1_off Supply current, VCC aux off TA = –40°C to 85°C 150 165 mA
TA = –65°C to 150°C 170
IDD Supply current, VDD TA = –40°C to 85°C 180 350 µA
TA = –65°C to 150°C 400
BANDWIDTH LIMITING FILTER SPECIFICATIONS
Pass band tolerance,
–3 dB bandwidth
All gains 20 MHz 0% 20%
100 MHz 0% 20%
200 MHz 0% 20%
350 MHz ±25%
650 MHz ±25%
750 MHz ±25%
Preamp LG,
0-dB ladder
350 MHz ±10%
650 MHz ±10%
750 MHz ±10%
(1) Electrical Characteristics table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA.
(2) Limits are 100% production tested at 25°C unless otherwise specified. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control (SQC) methods.
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depends on the application and configuration. The typical values are not tested and are not ensured on shipped production material.
(4) Recovery time is the slower of the main and auxiliary outputs. Output swing of 700 mVPP shifted up or down by 50% (0.35 V) by introducing an offset. Measured values correspond to the time it takes to return to within ±1% of 0.7 VPP (±7 mV).
(5) Distortion data taken under single ended input condition.
(6) Drift determined by dividing the change in parameter at temperature extremes by the total temperature change.
(7) Specified by design.
(8) Positive current is current flowing into the device.

6.6 Timing Requirements

MIN NOM MAX UNIT
TS SDIO setup time 25 ns
TH SDIO hold time 25 ns
TCES CS enable setup time (from CS asserted to rising edge of SCLK) 25 ns
tCDS CS disable setup time (from CS de-asserted to rising edge of SCLK) 25 ns
TIAG Inter-acess gap 3 SCLK cycles

6.7 Typical Characteristics

Unless otherwise noted, input CM = 2.5 V, VCM = 1.2 V, VCM AUX = 1.2 V, single-ended input drive, VCC = 5 V, VDD = 3.3 V,
RL = 100 Ω differential (both main and auxiliary outputs), VOUT = 0.7 VPP differential (both main and auxiliary outputs), main output specification (auxiliary is labeled), full bandwidth setting, gain = 18.8 dB (preamp LG, 0 dB ladder attenuation), and full power setting (with auxiliary output turned on).
LMH6518 30068842.gif Figure 1. Response (LG, 0 dB)
LMH6518 30068844.gif Figure 3. Response (HG, 0 dB)
LMH6518 30068846.gif Figure 5. Small Signal Response (HG, 0 dB)
LMH6518 30068852.gif Figure 7. Phase vs Gain
LMH6518 30068855.gif Figure 9. Auxiliary Response Over Temperature
LMH6518 30068847.gif Figure 11. Response vs Gain
LMH6518 30068849.gif Figure 13. Response vs Gain
LMH6518 30068853.gif Figure 15. Balance Error
LMH6518 30068807.gif Figure 17. Noise vs Ladder Attenuation
LMH6518 30068838.gif Figure 19. Noise Figure vs Gain
LMH6518 30068879.gif Figure 21. Input Current Noise vs Frequency
LMH6518 30068875.gif Figure 23. HD3 vs Ladder Attenuation
LMH6518 30068873.gif Figure 25. HD3 vs Ladder Attenuation
LMH6518 30068897.gif Figure 27. Main and Auxiliary Distortion Comparison
LMH6518 30068871.gif Figure 29. Gain vs Ladder Attenuation
LMH6518 30068870.gif Figure 31. Auxiliary Gain Accuracy vs Ladder Attenuation
LMH6518 30068858.gif Figure 33. AV_CM
LMH6518 30068859.gif Figure 35. AV_CM
LMH6518 30068889.gif Figure 37. Step Response
LMH6518 30068891.gif Figure 39. Step Response
LMH6518 30068865.gif Figure 41. Output Offset Voltage (Typical Unit 1)
LMH6518 30068867.gif Figure 43. Output Offset Voltage (Typical Unit 3)
LMH6518 30068863.gif Figure 45. Supply Current vs Supply Voltage
LMH6518 30068861.gif Figure 47. Input Bias Current vs Input CM
LMH6518 30068895.gif Figure 49. Filter BW vs Gain
LMH6518 30068881.gif Figure 51. Output vs Input
LMH6518 30068894.gif Figure 53. Overdrive Recovery Time (Return to Zero)
LMH6518 30068843.gif Figure 2. Phase (LG, 0 dB)
LMH6518 30068845.gif Figure 4. Small Signal Response (LG, 0 dB)
LMH6518 30068851.gif Figure 6. Response vs Gain
LMH6518 30068856.gif Figure 8. Response Over Temperature
LMH6518 30068854.gif Figure 10. Main vs Auxiliary Response
LMH6518 30068848.gif Figure 12. Phase vs Gain
LMH6518 30068850.gif Figure 14. Phase vs Gain
LMH6518 30068840.gif Figure 16. Linear Phase Deviation and Group Delay
LMH6518 30068837.gif Figure 18. Noise vs Ladder Attenuation
LMH6518 30068878.gif Figure 20. Input Voltage Noise vs Frequency
LMH6518 30068874.gif Figure 22. HD2 vs Ladder Attenuation
LMH6518 30068872.gif Figure 24. HD2 vs Ladder Attenuation
LMH6518 30068896.gif Figure 26. Main and Auxiliary Distortion Comparison
LMH6518 30068898.gif Figure 28. Distortion vs Output Power
LMH6518 30068869.gif Figure 30. Gain Accuracy vs Ladder Attenuation
LMH6518 30068868.gif Figure 32. Gain Matching vs Ladder Attenuation
LMH6518 30068857.gif Figure 34. AV_CM
LMH6518 30068876.gif Figure 36. –1 dB Compression vs Ladder Attenuation
LMH6518 30068890.gif Figure 38. Step Response
LMH6518 30068892.gif Figure 40. Step Response
LMH6518 30068866.gif Figure 42. Output Offset Voltage (Typical Unit 2)
LMH6518 30068860.gif Figure 44. VOS_CM vs VCM
LMH6518 30068864.gif Figure 46. Supply Current vs Supply Voltage
LMH6518 30068862.gif Figure 48. Auxiliary Output Voltage (Hi-Z Mode)
LMH6518 30068880.gif Figure 50. Output vs Input
LMH6518 30068882.gif Figure 52. Output vs Input