SNAS425C October   2007  – October 2014 LM98519

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Serial Interface Timing
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Input Clamping and Biasing Circuitry
      2. 7.3.2 Input Connections for 3 Channel Operation
      3. 7.3.3 AFE References
      4. 7.3.4 Offset Control
      5. 7.3.5 Black Level Calibration (Offset)
        1. 7.3.5.1 Manual Offset Adjustment
        2. 7.3.5.2 Automatic Offset Adjustment
        3. 7.3.5.3 Gain Control
        4. 7.3.5.4 White Level Calibration (AGC - Automatic Gain Control)
      6. 7.3.6 Operating Mode Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 AFEPHASEn Details for SHP/SHD Input Mode
      2. 7.4.2 AFEPHASEn Details for SAMPLE and HOLD Input Mode
      3. 7.4.3 AFEPHASEn: 6 Channel and 3 Channel Modes
      4. 7.4.4 LM98519 AFEPHASE Synchronization
      5. 7.4.5 Sampling Timing Diagrams
    5. 7.5 Programming
      1. 7.5.1  Using Black Pixel Average
      2. 7.5.2  Sample Timing Control
      3. 7.5.3  Timing Monitor Outputs
      4. 7.5.4  Output Data Test Pattern Generation
      5. 7.5.5  Fixed Pattern
      6. 7.5.6  Horizontal Gradation
      7. 7.5.7  Vertical Gradation
      8. 7.5.8  Lattice Pattern
      9. 7.5.9  Serial Interface
      10. 7.5.10 Serial Write
      11. 7.5.11 Serial Read
    6. 7.6 Register Maps
      1. 7.6.1 Configuration Registers
      2. 7.6.2 Configuration Register Details
  8. Application and Implementation
    1. 8.1 Design Requirements
    2. 8.2 Detailed Design Procedure
  9. Power Supply Recommendations
    1. 9.1 Over Voltage Protection on OS Inputs
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Supply Voltage –0.3 4.2 V
Voltage at any Pin (except VREG) –0.3 VDDD + 0.3 V
Voltage at VREG Pin –0.3 2.1 V
Input Current at any Pin(2) ±25 mA
Package Input Current(2) ±50 mA
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) When the input voltage (VIN) at any pin exceeds the power supplies [VIN < (GND – 0.3 V) or VIN > (VDDA + 0.3 V)], the DC current at that pin should be limited to ±25 mA. The 50 mA DC maximum package input current means that a maximum of two pins can simultaneously have input currents that equal 25 mA.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –65 150 °C
V(ESD) Electrostatic discharge(1) Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(2) 2500 V
Human body model (HBM, rated for the following pins only: SHP, SHD, CLPIN, BLKCLP, AGC_ONB, MCLK, RESETB, SENB, SCLK, SDI, SDO).(3) 7500
Machine model (MM) 250
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(4) 1000
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in to the device. Human body model, 100 pF discharged through a 1.5 kΩ resistor. Machine model, 200 pF discharged directly into each pin. Charged device model (CDM) simulates a pin slowly acquiring charge (such as from a device sliding down the feeder in an automated assembler) then rapidly being discharged.
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 2500-V HBM allows safe manufacturing with a standard ESD control process.
(3) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 7500-V HBM allows safe manufacturing with a standard ESD control process
(4) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 1000-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Analog Supply Voltage Range 3.0 3.6 V
Digital Supply Voltage Range 3.0 3.6 V
Output Supply Voltage Range 2.25 VDDD V
DC Power Supply Voltage Relationships(1) VDDD ≥ VDDA, VDDD ≥ VDDO
Voltage at any Digital I/O Pin 0 VDDD V
Voltage at any Analog Input Pin 0 VDDA V
Voltage at any Data Output Pin 0 VDDO V
Specified Temperature Range 0 70 °C
(1) Static voltage levels on VDDD must be at the same voltage or slightly higher than VDDO or VDDA. Therefore, driving all three power supplies from a common linear voltage regulator is recommended. Please see the following diagram. static_voltage_example.gif

6.4 Thermal Information

THERMAL METRIC(1) LM98519 UNIT
PFC
80 TERMINALS
RθJA Junction-to-ambient thermal resistance 32 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

The following specifications apply for VDDA = VDDD = VDDO = 3.3 V; FMCLK = 65 Ms/s and TA =+25°C unless otherwise noted. Boldface limits apply for TA = TMIN to TMAX. All other limits apply for TA =+25°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ADC/AFE
Resolution No missing codes 10 bits
INL Gain = 1x –2.4 –0.75 to 0.9 1.95 lsb
Gain = 6x –1.85 to 2.0
DNL Gain = 1x –0.99 –0.55 to 0.7 1.5 lsb
Gain = 6x –0.65 to 0.85
Noise Floor (SNR)(1) Gain = 1x 67.5 dB
Gain = 6x 55
Analog Input Range Peak-to-peak, CDS gain = 1x 1.12 1.19 1.29 V
Peak-to-peak, CDS gain = 2.1x 0.55 0.58 0.62
Analog Input Leakage (Osx inputs) GND < Vin < VDDA
Source Follower Enabled – OVP off
–330 ±25 140 nA
RCLAMP Input Clamp Impedance From bench and design 43 Ω
Conversion Ratio CDS/SH Gain Setting = 1x
PGA gain setting = Min
(Typical values by design)(2)
0.78 0.85 0.92 lsb/mV
Conversion Ratio
Color to Color Error
0.26%
Conversion Ratio
Ch1 to Ch2 Error
0.13%
Crosstalk – Color to Color R1,B1 to G1; R1,G1 to B1, etc.
R2, B2, to G2; R2, G2, to B2, etc.
Gain = 20x setting
0.8%
Crosstalk – Ch1 to Ch2 R1 to R2, R2 to R1, G1 to G2, G2 to G1, B1 to B2, B2 to B1
Gain = 20x setting
0.3%
PD Active Mode Power Consumption 3.3 V 1041 1271 mW
IDDA 3.3 V 257 mA
IDDD 3.3 V 58 mA
IDDO 3.3 V 70 mA
PD Power-Down Mode
Power Consumption
3.3 V – MCLK Active 153 201 mW
PGA (8 bits) Gain = 283/(283-M)
PGA Gain Range(3) Max Setting/Min Setting 19.5 20 20.9 dB
PGA Max Stepsize Largest PGA Step 0.3 dB
PGA Monotonicity Monotonic
PGA Error (Difference from ideal curve) 1.15%
CDS/SH
CDS/SH Gain Gain at 2x / Gain at 1x 2 2.1 2.13 V/V
OFFSET FDAC (±10 bits)
DAC Full Scale (input referred) Large FDAC range 102 110.5 120 ±mV
Small FDAC range 51 59.5 68
DAC Monotonicity Monotonic
OFFSET CDAC (±4 bits)
DAC Full Scale (input referred) 255 277 300 ±mV
DAC Monotonicity Monotonic
LOGIC I/O DC PARAMETERS
VIH Logic Input Voltage High
SHP, SHD, CLPIN, BLKCLP, AGC_ONB, MCLK, SCLK, SDI, SENB
2.0 V
VIL Logic Input Voltage Low
SHP, SHD, CLPIN, BLKCLP, AGC_ONB, MCLK, SCLK, SDI, SENB
0.8
IIN Logic Input Leakage Excludes AGC_ONB, BLKCLP, SENB, RESETB due to pull-ups or pull-downs on those pins –100 65 100 nA
VOH Logic Output Voltage High VDDD = 3.6 V, Iout = -0.5 mA 3.3 3.56 V
VDDD = 3.0 V, Iout = -0.5 mA 2.7 2.9
VOL Logic Output Voltage Low VDDD = 3.6 V, Iout = 1.6 mA 0.11 0.2 V
VDDD = 3.0 V, Iout = 1.6 mA 0.11 0.2
VRES Power On Reset Threshold From simulation 1.18 1.5 V
AFE/ADC TIMING
fMCLK MCLK frequency 6 channel mode 10 65 MHz
3 channel mode 10 32.5
MCLK Duty Cycle 45% 55%
Input Sampling Rate 6 Channel Mode 5 32.5 MS/s
3 Channel Mode 10 32.5
tRESET RESETB Pulse Width MCLK Present Mode 2 tMCLK
MCLK Idle Mode 50 ns
tRESET_CLR RESETB Clear Time MCLK Present Mode (ensured by design) 3 tMCLK
MCLK Idle Mode (ensured by design) 10 ns
tSHD SHP/SHD high period Ensured by design 8.2 ns
tMCS_MIN MCLK high to SAMPLE high (Minimum)(7) SH3 Mode – ADC Rate MCLK 9 13 ns(4)
SH2 Mode 10.5 14.5
SH1b Mode 2.4 5
CDSb Mode 1.8 4
tHMC_MIN HOLD high to MCLK high (Minimum)(7) SH3 Mode – ADC Rate MCLK 0.7 3.5 ns(4)
SH2 Mode –0.7 3
SH1b Mode –2.1 2
CDS Mode –3.1 1
tMCH_MIN MCLK high to HOLD high (Minimum)(7) SH3 Mode – ADC Rate MCLK 1 5 ns
tAD Aperture delay 4 5 6.9 ns
Aperture delay variation 0.2 1
tBCLPINB, tBLKCLP CLPIN/BLKCLP Pulse Width (high or low) 2 tMCLK
tIS CLPIN/BLKCLP Setup 3 ns
tIH CLPIN/BLKCLP Hold 3 ns
tC_B CLPIN neg. edge to BLKCLP start 6 Channel mode 16 Pixels
3 Channel mode 10
tLAT(1) 6 Channel Mode 6 Channel Mode, ADC Rate MCLK 11 tMCLK
Channel 1 Latency 6 Channel Mode, Pixel Rate MCLK 5
tLAT(2) 6 Channel Mode 6 Channel Mode, ADC Rate MCLK 12 tMCLK
Channel 2 Latency 6 Channel Mode, Pixel Rate MCLK 5.5
tLAT 3 Channel Mode Latency 3 Channel Mode ADC=Pixel Rate MCLK 11 tMCLK
tOD Output Data Delay Pixel Rate MCLK: ns(5)
6 Channel Mode – Channel 1 2 5.2 8
6 Channel Mode – Channel 2 2 5 8
ADC Rate MCLK: ns
6 Channel Mode – Channel 1 3 6 9
6 Channel Mode – Channel 2 3 6 9
3 Channel Mode 2 5.4 9
(1) SNR = 20log(1024/Output Noise(lsb rms)) with input = DC
(2) For conversion ratio min/max, variation and error, Conversion ratio is: (Digital Max – Digital Min)/(Vin Max – Vin Min). Measured at gain setting of 1x
(3) PGA gain range is: [(ADC_OUT(PGA at 1111111111)) / (ADC_OUT(PGA at 0000000000))]
(4) Measured with AFEPHASE = 11. For other AFEPHASE settings,these sample input timings will shift earlier with respect to MCLK as follows. (tHMC will increase by these amounts, tMCH will decrease by these amounts):
  • AFEPHASE = 10 – Earlier by ¼ pixel period
  • AFEPHASE = 01 – Earlier by ½ pixel period
  • AFEPHASE = 00 – Earlier by ¾ pixel period
(5) In Pixel Rate MCLK mode, the output data delay for Channel 2 data may be different under certain conditions of low MCLK duty cycle (< 50%). In that case the approximate output data delay tOD will increase by the following: (50 – MCLK Duty Cycle Percent)/100 * TMCLK
(6) SENB high pulse width should be > 50 ns when MCLK is not supplied. It should be > 5 MCLK when MCLK_ALIVE bit is set to 1 and MCLK is supplied.

6.6 Serial Interface Timing

MIN TYP MAX UNIT
tCP SCLK period 50 ns
tWH SCLK High width 20 ns
tWL SCLK Low width 20 ns
tIS SDI Setup time 5 ns
tIH SDI Hold time 5 ns
tSENSC SENB low before SCLK rising 5 ns
tSCSEN SENB high after SCLK rising 5 ns
tSENW SENB high width(6) 50 ns
5 tMCLK
tOD SDO Output delay 2 10 ns
power_on_reset_snas425.gifFigure 1. POR - Power On Reset
resetb_input_timing.gifFigure 2. RESETB Input Timing
input_setup_hold_timing.gif
Figure 3. Input Setup and Hold Timing
output_latency_timing_6channel_mode_adc_rate_MCLK.gif
Figure 4. Output Latency and Timing – 6 Channel Mode – ADC Rate MCLK
output_latency_timing_6channel_mode_pixel_rate_MCLK.gif
Figure 5. Output Latency and Timing – 6 Channel Mode – Pixel Rate MCLK
output_latency_timing_3_channel_mode.gif
Figure 6. Output Latency and Timing – 3 Channel Mode
td_data_cap_tim_6ch_ADC_rate_MCLK_snas425.gif
Figure 7. Data Capture Timing – 6 Channel – ADC Rate MCLK
td_data_cap_tim_6ch_pixel_rate_MCLK_snas425.gif
Figure 8. Data Capture Timing – 6 Channel – Pixel Rate MCLK
td_data_cap_tim_3ch_snas425.gif
Figure 9. Data Capture Timing – 3 Channel